Abstract: A digital manufacturing system comprises a build chamber, a build platform disposed within the build chamber, at least one extrusion line configured to heat a metal-based alloy up to a temperature between solidus and liquidus temperatures of the metal-based alloy, a deposition head disposed within the build chamber and configured to deposit the heated metal-based alloy onto the build platform in a predetermined pattern, an umbilical having a first end located outside of the build chamber and a second end connected to the deposition head, and at least one gantry assembly configured to cause relative motion between the build platform and the deposition head within the build chamber, where the at least one gantry assembly comprises a motor disposed outside of the build chamber.
Type:
Application
Filed:
June 24, 2008
Publication date:
December 24, 2009
Applicant:
Stratasys, Inc.
Inventors:
S. Scott Crump, J. Samuel Batchelder, Timothy Sampson, Robert L. Zinniel, John Barnett
Abstract: A method for building a 3D object with an extrusion-based layered deposition system comprising feeding a modified ABS material to an extrusion head of the extrusion-based layered deposition system, melting the fed modified ABS material in the extrusion head under conditions that improve a response time of the extrusion head, and depositing the molten thermoplastic material in a layer-by-layer manner to form the 3D object.
Abstract: A method of forming a three-dimensional object using an extrusion-based layered deposition system, the method comprising generating a build path for building a layer of the three-dimensional object, where the build path defines a void region. The method further comprising generating at least one intermediate path in the void region, and generating a remnant path based at least in part on the at least one intermediate path.
Abstract: An extrusion head comprising at least one mounting structure, a first liquefier pump secured to the at least one mounting structure, a second liquefier pump disposed adjacent to the first liquefier pump, a toggle mechanism supported by the at least one mounting structure and configured to move the second liquefier pump relative to the first liquefier pump along a first axis, and a slot engagement assembly connected in part to the second liquefier pump for defining a range of motion for the second liquefier pump along the first axis.
Abstract: A filament drive mechanism comprising a rotatable component comprising a central hole defined at least in part by an internally-threaded surface, and is configured to receive a filament strand through the central hole to engage the internally-threaded surface with the filament strand. The filament drive mechanism further comprises at least one rotation mechanism configured to rotate the rotatable component, thereby allowing the engaged internally-threaded surface to drive the filament strand through the central hole of the rotatable component.
Type:
Application
Filed:
April 30, 2008
Publication date:
November 5, 2009
Applicant:
Stratasys, Inc.
Inventors:
J. Samuel Batchelder, William J. Swanson
Abstract: A liquefier assembly comprising a liquefier tube, where the liquefier tube comprises a sidewall having an inlet opening configured to receive a filament strand, an outlet opening, and a port disposed through the sidewall at a location between the inlet opening and the outlet opening, the port being configured to provide access for a filament drive mechanism to engage with the received filament strand. The liquefier assembly further comprises a heat transfer component configured to generate a thermal gradient along a longitudinal length of the sidewall between the port and the outlet opening.
Type:
Application
Filed:
April 30, 2008
Publication date:
November 5, 2009
Applicant:
Stratasys, Inc.
Inventors:
J. Samuel Batchelder, William J. Swanson
Abstract: A method for building a three-dimensional object in a layer-by-layer manner, the method comprising heating a build chamber of a digital manufacturing system, feeding a solid feedstock of a modeling material comprising an amorphous metallic alloy to a liquefier assembly of the digital manufacturing system, heating the modeling material of the solid feedstock in the liquefier assembly to an extrudable state, and depositing the heated modeling material within the heated build chamber in a predetermined pattern to form the three-dimensional object.
Abstract: An extrusion head comprising at least one drive wheel and an assembly positionable between at least a first state and a second state. The assembly comprises a first extrusion line configured to engage the at least one drive wheel while the assembly is positioned in the first state, and a second extrusion line configured to engage the at least one drive wheel while the assembly is positioned in the second state.
Type:
Grant
Filed:
April 3, 2006
Date of Patent:
October 20, 2009
Assignee:
Stratasys, Inc.
Inventors:
Joseph E. LaBossiere, Benjamin N. Dunn, Thomas J. McDonough, Marvin E. Eshelman
Abstract: A method for building a three-dimensional object containing an identification-tag insert, the method comprising performing a build operation to form layers of the three-dimensional object using a layer-based additive technique, placing the identification-tag insert on at least a portion of the layers during the build operation, and reading information from the identification-tag insert.
Type:
Application
Filed:
January 8, 2008
Publication date:
July 9, 2009
Applicant:
Stratasys, Inc.
Inventors:
David M. Kozlak, Steven A. Chillscyzn, J. Samuel Batchelder
Abstract: A system for building a three-dimensional object with a layer-based additive technique, the system comprising a controller configured to receive build sequence data for the three-dimensional object, a head assembly in signal communication with the controller and configured to form a plurality of layers of the three-dimensional object based on the build sequence data, and an insert placement apparatus in signal communication with the controller and configured to place at least one insert in the plurality of formed layers based on the build sequence data.
Abstract: A method for generating build sequence data for a computer-aided design model of a three-dimensional object, the method comprising identifying a location of an insert data representation in the computer-aided design model, slicing the computer-aided design model into a plurality of sliced layers, generating a plurality of support layers for at least a portion of the plurality of sliced layers, and generating an unfilled region in the computer-aided design model at the identified location of the insert data representation.
Type:
Application
Filed:
January 8, 2008
Publication date:
July 9, 2009
Applicant:
Stratasys, Inc.
Inventors:
David M. Kozlak, Donald J. Holzwarth, J. Samuel Batchelder
Abstract: A method of forming a three-dimensional object using an extrusion-based layered deposition system, the method comprising generating a build path for building a layer of the three-dimensional object, where the build path defines a void region. The method further comprising generating at least one intermediate path in the void region, and generating a remnant path based at least in part on the at least one intermediate path.
Abstract: A three-dimensional model and its support structure are built by fused deposition modeling techniques, wherein a thermoplastic material containing silicone is used to form the support structure and/or the model. The thermoplastic material containing silicone exhibits good thermal stability, and resists build-up in the nozzle of an extrusion head or jetting head of a three-dimensional modeling apparatus. The silicone contained in a support material acts as a release agent to facilitate removal of the support structure from the model after its completion.
Abstract: The present invention is a method for forming an object, the method comprising jetting a first material to form a plurality of layers that define a support structure increment, and extruding a second material to form a layer of the object. The layer of the object substantially conforms to an interior surface of the support structure increment.
Type:
Grant
Filed:
May 24, 2007
Date of Patent:
March 10, 2009
Assignee:
Stratasys, Inc.
Inventors:
Robert L. Zinniel, John Samuel Batchelder
Abstract: An extrusion head comprising at least one mounting structure, a first liquefier pump secured to the at least one mounting structure, a second liquefier pump disposed adjacent to the first liquefier pump, a toggle mechanism supported by the at least one mounting structure and configured to move the second liquefier pump relative to the first liquefier pump along a first axis, and a slot engagement assembly connected in part to the second liquefier pump for defining a range of motion for the second liquefier pump along the first axis.
Abstract: A method for modifying a computer-aided design model of a three-dimensional object, the method comprising establishing a threshold wall width, providing at least one sliced layer polyline of the computer-aided design model, determining a first distance between first and second portions of the at least one sliced layer polyline, and adjusting locations of the first and second portion to provide a second distance if the first distance is less than the threshold wall width, where the second distance is about equal to the threshold wall width, or greater.