Abstract: A method for altering an eye color of a patient with a color alteration procedure is disclosed that may include imaging the iris with an image sensor prior to the color alteration procedure to generate an image of the iris. A mapping of the iris may be generated from the image. The mapping may include a number of regions corresponding to varying absorption coefficients of a treatment wavelength in the stromal pigment of the iris. A laser system may be set, based on the mapping, to deliver laser light at a laser power sufficient to cause elimination of at least a portion of stromal pigment in the iris. The laser light may then be delivered with the laser system.
Abstract: A system for altering the eye color of a patient with a color alteration procedure includes a laser system having a housing around at least one component of the laser system. The laser system also has a perimeter circuit configured to detect a breach of the housing based on the perimeter circuit being broken resulting in an electrical current flowing through the perimeter circuit being ceased or a change in resistance in the perimeter circuit. The system also includes software that detects, by the perimeter circuit, the breach based on the perimeter circuit being broken. The software also executes, based on the breach, an electronic lockout of the laser system such that the laser system cannot be operated without receipt of a command lifting the electronic lockout.
Abstract: A system for supporting and aligning a patient during a color alteration procedure includes a laser system that delivers a laser in a first direction. A control computer may be adjacent the laser system for controlling the laser system. The control computer system may include a user interface in a first plane substantially perpendicular to the first direction. The system may include a patient support structure having a patient support surface extending in a second direction substantially perpendicular to the first direction and configured to be adjustable to set a patient position or alignment relative to the laser system. Coarse adjustment hardware may be configured to cause automated and/or manual adjustments to the patient support surface in the first direction. Fine adjustment hardware may be configured to cause automated fine adjustments to the patient support surface in the first direction based on instructions received from the control computer.
Abstract: A method for altering an eye color of a patient with a color alteration procedure is disclosed that may include determining a laser power to deliver to stromal pigment in an iris of the eye of the patient by at least retrieving a set of laser criteria for delivery of an exposure less than 100 times a maximum permissible exposure that causes elimination of at least a portion of the stromal pigment. A laser system may be set to deliver laser light at the laser power which is less than the set of laser criteria and the laser light may be delivered with the laser system.
Abstract: Rather than rely solely upon pupillary occlusion or tracking of eye movement to protect the fundus from accidental exposure to electromagnetic radiation, the present invention also utilizes an electromagnetic radiation pathway with a profile such that the energy density at the iris is greater than the energy density at the posterior portion of the eye. This disparity in energy density allows for efficacy at the anterior iris treatment site, without injury to the fundus.
Abstract: Techniques for altering iris pigment in a human or animal, thereby altering iris color of an iris from a first iris color to a second iris color, are provided. An apparatus includes at least one laser device and a masking device. Another apparatus includes at least one laser device and a contact lens. The at least one laser device can generate at least one beam to selectively remove iris pigment of at least one preselected pigment color from the iris.