Patents Assigned to Sumco Techxiv Corporation
  • Publication number: 20100285665
    Abstract: In a method of manufacturing semiconductor wafers, front and hack surfaces of the semiconductor wafers are simultaneously polished with a double-side polishing machine that includes: a carrier for accommodating the semiconductor wafer; and an upper press platen and a lower press platen for sandwiching the carrier. The method includes: accommodating the semiconductor wafer in the carrier while a thickness of the semiconductor wafer is set to be larger than a thickness of the carrier by 0 ?m to 5 ?m; and polishing the semiconductor wafer while feeding a polishing slurry to between the surfaces of the semiconductor wafer and surfaces of the press platens. In the polishing, an allowance of both surfaces of the semiconductor wafer is set at 5 ?m or less in total.
    Type: Application
    Filed: September 11, 2008
    Publication date: November 11, 2010
    Applicant: SUMCO TECHXIV CORPORATION
    Inventors: Hiroshi Takai, Kenji Satomura, Yuichi Nakayoshi, Katsutoshi Yamamoto, Kouji Mizowaki
  • Publication number: 20100272892
    Abstract: A plurality of partial control zones (an LL zone, an LR zone, and an R zone) that can control a gas flow rate independently in a widthwise direction of a gas flow are configured on an upstream side of the gas inlet port 20B. A control device 66 is disposed to control a gas flow rate for respective partial control zones.
    Type: Application
    Filed: April 1, 2010
    Publication date: October 28, 2010
    Applicant: SUMCO TECHXIV CORPORATION
    Inventors: Hidenori KOBAYASHI, Kouichi NISHIKIDO, Motonori NAKAMURA
  • Publication number: 20100212580
    Abstract: For manufacturing a monocrystal, a monocrystal pulling-up device controls pressure within a flow straightening cylinder to be from 33331 Pa to 79993 Pa and a flow velocity of inert gas in the cylinder to be from 0.06 m/sec to 0.31 m/sec (0.005 to 0.056 SL/min·cm2) during a post-addition-pre-growth period. By controlling the flow velocity of the inert gas to be in the above-described range during the post-addition-pre-growth period, the inert gas flows smoothly even when the pressure within the cylinder is relatively high. Evaporation of a volatile dopant because of a reverse flow of the inert gas can be restrained. The volatile dopant can be prevented from adhering to the flow straightening cylinder in an amorphous state, and the volatile dopant can be prevented from dropping into a melt or sticking on the melt while growing a crystal. Foulings can be easily removed.
    Type: Application
    Filed: July 25, 2008
    Publication date: August 26, 2010
    Applicant: SUMCO TECHXIV CORPORATION
    Inventors: Shinichi Kawazoe, Fukuo Ogawa, Yasuhito Narushima, Toshimichi Kubota
  • Publication number: 20100212588
    Abstract: An apparatus designed to increase the quality of a low-resistance semiconductor single crystal doped with an N-type volatile dopant to a high concentration and increase the production yield by controlling the pressure inside the furnace with good controllability. A vacuum line, a pressure control valve, and an open valve are newly added to the conventional semiconductor single crystal production apparatus. A controller controls the pressure control valve on the basis of a detection value of pressure detection means so as to obtain the desired low resistance value of the semiconductor single crystal. The open valve is controlled so that the open valve is opened in a case where the pressure inside the furnace detected by the pressure detection means reaches an abnormal value.
    Type: Application
    Filed: July 2, 2008
    Publication date: August 26, 2010
    Applicant: SUMCO TECHXIV CORPORATION
    Inventors: Ayumi Suda, Naoji Mitani
  • Publication number: 20100207385
    Abstract: A clamp with which ends of two tubular members can be connected by simple work. The clamp has a support member, a first arm having one end pivotably supported by a support member, a second arm having one end pivotably supported by the support member and placed to face the first arm, a first long hole formed in the first arm on its support member side, a second long hole formed in the second arm on its support member side, and a connection member having a first pin-like member engaging with the first long hole and also having a second pin-like member engaging with the second long hole. The connection member is movable so as to separate from and approaches the support member with the distance from the connection member to the first pin-like member and the second pin-like member maintained constant. The first long hole and/or the second long hole is formed so as to extend in the direction crossing the direction X of movement of the connection member.
    Type: Application
    Filed: June 25, 2008
    Publication date: August 19, 2010
    Applicant: SUMCO TECHXIV CORPORATION
    Inventor: Tomokazu Nishimura
  • Patent number: 7767969
    Abstract: An object of the present invention is to provide a spectroscopic method and an apparatus which can measure a trace element accurately with high sensitivity. In order to achieve this object, for example, in Fourier transformation infrared spectroscopy (FT-IR), a reference spectrum and a measurement spectrum including an impurity spectrum are measured in order to obtain a differential spectrum comprising the impurity spectrum and a flat baseline, correction including a frequency shift of the reference spectrum before calculating a differential spectrum, is performed on the reference spectrum. This makes it possible to remove baseline deformation due to phonon absorbance of silicon included in the conventional differential spectrum, and to obtain an infrared absorption spectrum of the substitutional carbon with high accuracy and high sensitivity.
    Type: Grant
    Filed: January 6, 2009
    Date of Patent: August 3, 2010
    Assignee: Sumco Techxiv Corporation
    Inventors: Kiyoshi Nagai, Harumi Shibata, Sayaka Hamaguchi
  • Patent number: 7767020
    Abstract: A method for manufacturing a single crystal semiconductor, in which, in a process of pulling up the single crystal semiconductor from melt for growing it, an impurity is incorporated more uniformly into the single crystal semiconductor so that a variation in impurity concentration across the semiconductor wafer surface can be reduced, and thus, the planarity of the wafer can be improved. In the process of pulling-up the single crystal semiconductor (6), fluctuation in a pulling-up speed is controlled, whereby the variation in concentration of the impurity in the single crystal semiconductor (6) is reduced. Especially, a width of speed fluctuation (?V) in 10 seconds is adjusted to less than 0.025 mm/min. Furthermore, in carrying out the control for adjusting the pulling-up speed such that a diameter of the single crystal semiconductor (6) becomes a desired diameter, a magnetic field having strength of 1,500 gauss or more is applied to the melt (5).
    Type: Grant
    Filed: February 18, 2005
    Date of Patent: August 3, 2010
    Assignee: Sumco Techxiv Corporation
    Inventors: Hiroshi Inagaki, Masanori Honma, Shigeki Kawashima, Masahiro Shibata
  • Patent number: 7759227
    Abstract: A method is provided capable of universally controlling the proximity gettering structure, the need for which can vary from manufacturer to manufacturer, by arbitrarily controlling an M-shaped distribution in a depth direction of a wafer BMD density after RTA in a nitrogen-containing atmosphere. The heat-treatment method is provided for forming a desired internal defect density distribution by controlling a nitrogen concentration distribution in a depth direction of the silicon wafer for heat-treatment, the method including heat-treating a predetermined silicon wafer used for manufacturing a silicon wafer having a denuded zone in the vicinity of the surface thereof.
    Type: Grant
    Filed: April 22, 2005
    Date of Patent: July 20, 2010
    Assignee: Sumco Techxiv Corporation
    Inventors: Susumu Maeda, Takahisa Sugiman, Shinya Sadohara, Shiro Yoshino, Kouzo Nakamura
  • Publication number: 20100175612
    Abstract: To provide a manufacturing method for a silicon single crystal that can reduce introduction of dislocation thereinto even if a required amount of dopant is added to a melt while growing a straight body portion of a silicon ingot. In a manufacturing method for a silicon single crystal according to the present invention that includes a dopant addition step of adding a dopant to a melt while a straight body portion of a silicon single crystal is growing in a growth step of growing the silicon single crystal by dipping a seed crystal into a silicon melt and then pulling the seed crystal therefrom, in the dopant addition step, a remaining mass of the melt is calculated at the beginning thereof, and the dopant is added to the melt at a rate of 0.01 to 0.035 g/min·kg per minute per 1 kg of the calculated remaining mass of the melt.
    Type: Application
    Filed: January 8, 2010
    Publication date: July 15, 2010
    Applicant: SUMCO TECHXIV CORPORATION
    Inventors: Yasuhito NARUSHIMA, Toshimichi KUBOTA, Shinichi KAWAZOE, Fukuo OGAWA, Tomohiro FUKUDA
  • Patent number: 7754585
    Abstract: A method of subjecting a silicon wafer doped with boron to a heat treatment in an argon atmosphere, wherein the argon atmosphere is replaced with a hydrogen atmosphere or a mixed gas of an argon gas and a hydrogen gas in a proper fashion, to thereby uniformize a boron concentration in the thickness direction of the surface layer of the silicon wafer doped with boron.
    Type: Grant
    Filed: December 21, 2001
    Date of Patent: July 13, 2010
    Assignee: Sumco Techxiv Corporation
    Inventors: Yuji Sato, Shirou Yoshino, Hiroshi Furukawa, Hiroyuki Matsuyama
  • Publication number: 20100151667
    Abstract: A dopant device includes: a dopant holder that holds Ge which is solid at normal temperature and liquefies the Ge near a surface of the semiconductor melt, the dopant holder including a communicating hole for delivering the liquefied Ge downwardly; a cover portion for covering the Ge held by the dopant holder; and a vent provided on the cover portion for communicating with the outside. A dopant injecting method is carried out using such a dopant device, the dopant injecting method including: loading Ge dopant in a solid state into the doping device; liquefying the solid Ge dopant loaded into the doping device while holding the doping device at a predetermined height from a surface of a semiconductor melt; and doping the semiconductor melt with the liquefied Ge that is flowed from the communicating hole.
    Type: Application
    Filed: May 23, 2008
    Publication date: June 17, 2010
    Applicant: SUMCO TECHXIV CORPORATION
    Inventors: Yasuhito Narushima, Shinichi Kawazoe, Fukuo Ogawa, Toshimichi Kubota
  • Publication number: 20100144248
    Abstract: A double-side grinding apparatus is designed to be capable of minimizing thermal expansion of hydrostatic pad members and reducing nanotopography in performing wafer grinding. The double-side grinding apparatus is a double-side grinding apparatus for wafers that can simultaneously grind either surface of a wafer to be ground by pressing a grindstone against either surface of the wafer to be ground while hydrostatically supporting either surface of the wafer to be ground in a noncontact manner. Each hydrostatic supporting unit is formed with a hydrostatic pad member facing the wafer to be ground, and a base member placed on the back surface of the hydrostatic pad member. The hydrostatic pad member is made of a ceramic member, and the base member is made of a metal member.
    Type: Application
    Filed: October 28, 2009
    Publication date: June 10, 2010
    Applicant: SUMCO TECHXIV CORPORATION
    Inventor: Hiroyasu FUTAMURA
  • Publication number: 20100143579
    Abstract: A method of manufacturing an epitaxial wafer in which an epitaxial layer is grown over a main surface of a silicon wafer placed substantially horizontally on a susceptor is provided. The method comprises: a growing step of the epitaxial layer; and a cooling step of cooling the epitaxial wafer having the epitaxial layer. The cooling step comprises: a wafer measurement step of measuring a temperature of the epitaxial wafer; a susceptor measurement step of measuring a temperature of the susceptor; and a control step of controlling a heater capable of heating at least the susceptor or the epitaxial wafer such that difference between a temperature of the epitaxial wafer and a temperature of the susceptor is within a predetermined range.
    Type: Application
    Filed: December 7, 2009
    Publication date: June 10, 2010
    Applicant: SUMCO TECHXIV CORPORATION
    Inventor: Kazuhiro NARAHARA
  • Publication number: 20100133485
    Abstract: In growing a silicon monocrystal from a silicon melt added with an N-type dopant by Czochralski method, the monocrystal is grown such that a relationship represented by a formula (1) as follows is satisfied. In the formula (1): a dopant concentration in the silicon melt is represented by C (atoms/cm3); an average temperature gradient of the grown monocrystal is represented by Gave(K/mm); a pulling-up speed is represented by V (mm/min); and a coefficient corresponding to a kind of the dopant is represented by A. By growing the silicon monocrystal under a condition shown in the left to a critical line G1, occurrence of abnormal growth due to compositional supercooling can be prevented.
    Type: Application
    Filed: May 23, 2008
    Publication date: June 3, 2010
    Applicant: SUMCO TECHXIV CORPORATION
    Inventors: Shinichi Kawazoe, Toshimichi Kubota, Yasuhito Narushima, Fukuo Ogawa
  • Patent number: 7727334
    Abstract: In a Czochralski (CZ) single crystal puller equipped with a cooler and a thermal insulation member, which are to be disposed in a CZ furnace, smooth recharge and additional charge of material are made possible. Further, elimination of dislocations from a silicon seed crystal by use of the Dash's neck method can be performed smoothly. To these ends, there is provided a CZ single crystal puller, wherein a cooler and a thermal insulation member are immediately moved upward away from a melt surface during recharge or additional charge of material or during elimination of dislocations from a silicon seed crystal by use of the Dash's neck method.
    Type: Grant
    Filed: May 31, 2007
    Date of Patent: June 1, 2010
    Assignee: Sumco Techxiv Corporation
    Inventors: Hiroshi Inagaki, Shigeki Kawashima, Makoto Kamogawa, Toshirou Kotooka, Toshiaki Saishoji, Daisuke Ebi, Kentaro Nakamura, Kengo Hayashi, Yoshinobu Hiraishi, Shigeo Morimoto, Hiroshi Monden, Tadayuki Hanamoto, Tadashi Hata
  • Publication number: 20100116194
    Abstract: Provided is a silicon crystalline material, which is manufactured by a CZ method to be used as a material bar for manufacturing a silicon single crystal by an FZ method and has a grasping section for being loaded in a crystal growing furnace employing the FZ method without requiring mechanical processing. A method for manufacturing such silicon crystalline material is also provided. The silicon crystalline material is manufactured by the silicon crystal manufacturing method employing the CZ method and is provided with the grasping section, which is manufactured in a similar way as a shoulder portion, a straight body portion and a tail portion in a silicon crystal growing step employing the CZ method, and is loaded in a single crystal manufacturing apparatus employing the FZ method to grow single crystals. A seed-crystal used in the silicon crystal manufacture employing the CZ method is used as the grasping section.
    Type: Application
    Filed: January 23, 2008
    Publication date: May 13, 2010
    Applicant: SUMCO TECHXIV CORPORATION
    Inventors: Shinji Togawa, Ryosuke Ueda
  • Publication number: 20100112213
    Abstract: In a manufacturing apparatus for manufacturing an epitaxial wafer with a wafer being mounted substantially concentrically with a susceptor, a center rod is provided to extend in an up-and-down direction on a side of a non-mounting surface of the susceptor so that its upper end is adjacent to the center of the susceptor. With this arrangement, part of radiation light irradiated toward the susceptor is diffusely reflected by the center rod before reaching the central portion of the susceptor, thereby reducing the amount of the radiation light irradiated to the central portion of the susceptor as well as lowering the temperature of the portion. Since the center rod and the susceptor are not in surface contact, the center rod does not take the heat from the susceptor, thereby suppressing the temperature from decreasing locally at the central portion of the susceptor.
    Type: Application
    Filed: November 2, 2009
    Publication date: May 6, 2010
    Applicant: SUMCO TECHXIV CORPORATION
    Inventors: Motonori NAKAMURA, Yoshinobu MORI, Takeshi MASUDA, Hidenori KOBAYASHI, Kazuhiro NARAHARA
  • Publication number: 20100105295
    Abstract: A seasoning plate is placed on a polishing pad and performs seasoning of the polishing pad by abrading the polishing pad through the friction caused by rotation of the polishing pad. The seasoning plate includes: conditioners that abrade the polishing pad; a round flexible substrate that has the conditioners attached to the lower face thereof; an O-ring that is placed on the upper face of the flexible substrate, the O-ring forming a circle concentric with the flexible substrate; and a weight plate serving as a weight portion that is placed on the O-ring and applies weight for deforming the flexible substrate.
    Type: Application
    Filed: October 28, 2009
    Publication date: April 29, 2010
    Applicant: SUMCO TECHXIV CORPORATION
    Inventors: Daisuke MARUOKA, Koudai MOROIWA
  • Publication number: 20100100217
    Abstract: To accurately control controlled object in a time variant system with a dead time such as a Czochralski method single crystal production device (CZ equipment). The dead time, the time constant, and the process gain value of a controlled object (CZ equipment) (200) are set. The process gain preset value has specified time variant characteristics. An output value y and its first-order and second-order time differentiated values are used as the state variable x of the controlled object (200). A nonlinear state predicting unit (206) predicts a state variable value x(t+Ld) at a future point in time after the dead time, based upon the current output value y, the dead time, the time constant, and the process gain preset value.
    Type: Application
    Filed: June 7, 2006
    Publication date: April 22, 2010
    Applicant: SUMCO TECHXIV CORPORATION
    Inventors: Kenichi Bandoh, Shigeo Morimoto, Takuji Okumura, Tetsu Nagata, Masaru Shimada, Junsuke Tomioka, Yutaka Shiraishi, Takeshi Kodama
  • Patent number: 7699934
    Abstract: A susceptor structure capable of discharging the atmosphere containing dopant species and filling a wafer pocket, without causing a large quantity of a raw material gas to flow from the front surface side of a susceptor to under the susceptor. The susceptor having an approximately round disk shape and having a concave wafer pocket on the front surface thereof for accommodating a wafer, comprises a gas inlet notch passing through from a side surface or a rear surface of the susceptor to the wafer pocket, and a gas discharge notch passing through from the wafer pocket to the side surface or the rear surface of the susceptor. A carrier gas is introduced from the gas inlet notch of the susceptor into the wafer pocket, as shown by arrow b and the gas present inside the wafer pocket is discharged from the gas discharge notch, as shown by arrow c, by using the rotation of the susceptor during epitaxial film growth.
    Type: Grant
    Filed: July 25, 2003
    Date of Patent: April 20, 2010
    Assignee: Sumco Techxiv Corporation
    Inventor: Hidemasa Kai