Patents Assigned to Sumikin Stainless Steel Corporation
  • Publication number: 20170349988
    Abstract: The present invention focuses on Sn and has as its problem to not only improve the corrosion resistance and rust resistance of Cr-containing ferritic stainless steel but also improve the ridging resistance. The present invention derives the relationship between Ap, which shows the ?-phase rate at 1100° C. due to a predetermined ingredient, and Sn in ferritic stainless steel which becomes a dual phase structure of ?+? in the hot rolling temperature region, applies and adds Sn, and hot rolls the steel to give a total rolling rate of 15% or more in 1100° C. or higher hot rolling to thereby obtain ferritic stainless steel sheet which has good ridging resistance, which also has excellent corrosion resistance and rust resistance, and which can be applied to general durable consumer goods: 0.060?Sn?0.634?0.
    Type: Application
    Filed: August 22, 2017
    Publication date: December 7, 2017
    Applicant: NIPPON STEEL & SUMIKIN STAINLESS STEEL CORPORATION
    Inventors: Masaharu HATANO, Eiichiro ISHIMARU, Akihiko TAKAHASHI, Ken KIMURA, Shinichi TERAOKA
  • Patent number: 9837567
    Abstract: Provided is a stainless steel substrate for a solar cell, the stainless steel substrate including, by mass %, Cr: 9% to 25%, C: 0.03% or less, Mn: 2% or less, P: 0.05% or less, S: 0.01% or less, N: 0.03% or less, Al: 0.005% to 5.0%, Si: 0.05% to 4.0%, and a remainder including Fe and unavoidable impurities, in which an oxide film containing (i) Al2O3 in an amount of 50% or more or containing (i) Al2O3 and (ii) SiO2 in a total amount of 50% or more is formed on a surface of stainless steel having a composition which contains Al: 0.5% or more and/or Si: 0.4% or more and satisfies the following expression (1). Cr+10Si+Mn+Al>24.
    Type: Grant
    Filed: May 2, 2014
    Date of Patent: December 5, 2017
    Assignee: NIPPON STEEL & SUMIKIN STAINLESS STEEL CORPORATION
    Inventors: Masaharu Hatano, Eiichiro Ishimaru, Kenji Hattori
  • Publication number: 20170321310
    Abstract: A ferritic stainless steel for a fuel cell includes, in mass %, Cr: 11 to 25%, C: 0.03% or less, Si: 2% or less, Mn: 2% or less, Al: 0.5 to 4.0%, P: 0.05% or less, S: 0.01% or less, N: 0.03% or less, Ti: 1% or less, and a balance composed of Fe and unavoidable impurities. Furthermore, in the ferritic stainless steel, the maximal concentration of Al in a surface of the ferritic stainless steel is 30 mass % or more in cation ion fraction excepting 0 in an depth direction region having twice a thickness of an oxide film having less than 0.1 ?m.
    Type: Application
    Filed: July 29, 2015
    Publication date: November 9, 2017
    Applicant: NIPPON STEEL & SUMIKIN STAINLESS STEEL CORPORATION
    Inventors: Masaharu HATANO, Atsutaka HAYASHI, Kazuhisa MATSUMOTO
  • Publication number: 20170314093
    Abstract: A ferritic stainless steel sheet and a steel pipe as a material suitable for a heat-resistant component that is required to have especially excellent formability are provided. The ferritic stainless steel sheet contains 10 to 20 mass % of Cr and a predetermined amount of C, Si, Mn, P, S, Al and one or both of Ti and Nb, a {111}-orientation intensity being 5 or more and {411}-orientation intensity being less than 3 at a portion in the vicinity of a sheet-thickness central portion of the ferritic stainless steel sheet. Further, with similar composition and by setting {111}<110>-orientation intensity at 4.0 or more and {311}<136>-orientation intensity at less than 3.0, a relationship rm??1.0t+3.0 (t (mm): sheet thickness, rm: average r-value) is satisfied, thereby providing a ferritic stainless steel sheet and a steel pipe with excellent formability.
    Type: Application
    Filed: October 27, 2015
    Publication date: November 2, 2017
    Applicant: NIPPON STEEL & SUMIKIN STAINLESS STEEL CORPORATION
    Inventors: Junichi HAMADA, Kou NISHIMURA, Jun ARAKI, Nozomu FUKUDA, Toshio TANOUE
  • Publication number: 20170275723
    Abstract: This ferritic stainless steel contains, by mass %, C: 0.001% to 0.030%; Si: 0.01% to 1.00%, Mn: 0.01% to 2.00%, P: 0.050% or less, S: 0.0100% or less, Cr: 11.0% to 30.0%, Mo: 0.01% to 3.00%, Ti: 0.001% to 0.050%, Al: 0.001% to 0.030%, Nb: 0.010% to 1.000%, and N: 0.050% or less, with a remainder being Fe and inevitable impurities, wherein an amount of Al, an amount of Ti, and an amount of Si (mass %) satisfy Al/Ti?8.4Si?0.78.
    Type: Application
    Filed: October 30, 2015
    Publication date: September 28, 2017
    Applicant: NIPPON STEEL & SUMIKIN STAINLESS STEEL CORPORATION
    Inventors: Masatoshi ABE, Junichi HAMADA, Nobuhiko HIRAIDE, Norihiro KANNO, Shigeo FUKUMOTO, Shigeru KANEKO, Atsutaka HAYASHI
  • Patent number: 9771640
    Abstract: A ferritic stainless steel sheet having ridging resistance contains, by mass, 0.025 to 0.30% C, 0.01 to 1.00% Si, 0.01 to 2.00% Mn, 0.050% or less P, 0.020% or less S, 11.0 to 22.0% Cr, and 0.022 to 0.10% N. In addition, Ap, which is defined as 420C+470N+23Ni+9Cu+7Mn?11.5(Cr+Si)?12Mo?52Al?47Nb?49Ti+189 wherein each of Sn, C, N, Ni, Cu, Mn, Cr, Si, Mo, Al, Nb, and Ti denotes the content of the element, satisfies 10?Ap?70. Furthermore, a content of Sn satisfies 0.060?Sn?0.634?0.0082Ap. Residual ingredients are Fe and unavoidable impurities, and a metal structure of the steel sheet is a ferrite single phase. The ferritic stainless steel sheet has a ridging height of less than 6 ?m. This ferritic stainless steel sheet improves the corrosion resistance and rust resistance of Cr-containing ferritic stainless steel as well as the ridging resistance.
    Type: Grant
    Filed: June 18, 2012
    Date of Patent: September 26, 2017
    Assignee: NIPPON STEEL & SUMIKIN STAINLESS STEEL CORPORATION
    Inventors: Masaharu Hatano, Eiichiro Ishimaru, Akihiko Takahashi, Ken Kimura, Shinichi Teraoka
  • Publication number: 20170253945
    Abstract: A martensitic stainless steel used for a brake disk of a two-wheeled vehicle includes: in % by mass, C of 0.025% to 0.080%, Si of 0.05% to 0.8%, Mn of 0.5% to 1.5%, P of 0.035% or less, S of 0.015% or less, Cr of 11.0% to 13.5%, Ni of 0.01% to 0.50%, Cu of 0.01% to 0.08%, Mo of 0.01% to 0.30%, V of 0.01% to 0.10%, Al of 0.05% or less, and N of 0.015% to 0.060%; a DFE value defined by a formula (1) ranging from 5 to 30; and a ? ferrite fraction observed in a cross section structure ranging from 5% to 30% by an area ratio. Ti, B, Nb, Sn and Bi may be added.
    Type: Application
    Filed: September 2, 2015
    Publication date: September 7, 2017
    Applicant: NIPPON STEEL & SUMIKIN STAINLESS STEEL CORPORATION
    Inventors: Shinichi TERAOKA, Yoshiharu INOUE, Yuji KOYAMA, Junichi HAMADA, Toshio TANOUE
  • Patent number: 9714459
    Abstract: The present invention is directed to a heat-resistant austenitic stainless steel sheet comprising, by mass %, C: 0.03% to 0.06%, N: 0.1% to 0.3%, Si: 1% or less Mn: 3% or less, P: 0.04% or less, S: 0.03% or less, Ni: 5 to 12%, Cr: 15 to 20%, Al: 0.01% to 0.1%, Nb: 0.05% to 0.3%, V: 0.05% to 0.30%, Ti: 0.03% or less, (Nb+V)/(C+N): 2 or less and further a balance of Fe and unavoidable impurities, and wherein an amount of precipitates mainly comprised of carbonitrides is 1% or less.
    Type: Grant
    Filed: March 28, 2013
    Date of Patent: July 25, 2017
    Assignee: NIPPON STEEL & SUMIKIN STAINLESS STEEL CORPORATION
    Inventors: Yoshiharu Inoue, Fumio Fudanoki, Junichi Hamada
  • Publication number: 20170175237
    Abstract: A ferritic stainless steel, which has excellent heat exchange properties, corrosion resistance and brazing property of the heat exchanger component, and a heat exchanger using the ferritic stainless steel are provided. The ferritic stainless steel includes, in a mass %, C: 0.030% or less, N: 0.020% or less, Si: 0.5% or less, Mn: 1.0% or less, P: 0.05% or less, 5: 0.01% or less, Cr: 16% to 25%, Nb: 0.05% to 1.0%, Al: 0.003% to 0.20%, and a balance composed of Fe and unavoidable impurities. The Al oxide is present on the surface of the material, the surface coverage ratio by the Al oxide is 5% to 70%, the surface roughness in Ra measured by red laser is 0.010 ?m to 0.15 ?m, and the thickness from the surface to the point, which includes the value of a half peak of the Al content on the surface, satisfies 300 nm or less, the value of a half peak of the Al content being obtained from an elemental profile expressed by a cation ratio.
    Type: Application
    Filed: July 16, 2015
    Publication date: June 22, 2017
    Applicant: Nippon Steel & Sumikin Stainless Steel Corporation
    Inventors: Tooru MATSUHASHI, Yuuichi TAMURA
  • Publication number: 20170137946
    Abstract: This clear-coated stainless steel sheet includes: a stainless steel sheet; a clear resin layer formed on the stainless steel sheet; and resin beads (D) included in the clear resin layer, wherein the clear resin layer includes: a lowermost layer including a first thermosetting resin composition (A) containing an acryl resin (a1) having a crosslinking functional group; and an uppermost layer including a second thermosetting resin composition (B), and an average particle diameter of the resin beads (D) is 0.7 times to 1.5 times the film thickness of the clear resin layer.
    Type: Application
    Filed: April 7, 2015
    Publication date: May 18, 2017
    Applicant: NIPPON STEEL & SUMIKIN STAINLESS STEEL CORPORATION
    Inventors: Haruki ARIYOSHI, Youichirou YASUDA
  • Publication number: 20170107593
    Abstract: The present invention provides a rolled ferritic stainless steel material excellent in corrosion resistance and toughness, in particular suitable as a material for a flange and a method for producing the same and flange part. The rolled ferritic stainless steel material contains, by mass %, C: 0.001 to 0.08%, Si: 0.01 to 1.0%, Mn: 0.01 to 1.0%, P: 0.01 to 0.05%, S: 0.0002 to 0.01%, Cr: 10.0 to 25.0%, and N: 0.001 to 0.05%, has a balance of Fe and unavoidable impurities, has a thickness of 5 mm or more, and has an area ratio of crystal grains with a <011> direction within 15° from the rolling direction of 20% or more in a cross-section parallel to the rolling direction at any location between the left and right ends of the steel sheet.
    Type: Application
    Filed: March 26, 2015
    Publication date: April 20, 2017
    Applicant: NIPPON STEEL & SUMIKIN STAINLESS STEEL CORPORATION
    Inventors: Junichi HAMADA, Koji ITO
  • Patent number: 9611525
    Abstract: An aspect of a ferritic stainless steel contains, by mass %: C: 0.03% or less; N: 0.03% or less; Si: more than 0.1% to 1% or less; Mn: 0.02% to 1.2%; Cr: 15% to 23%; Al: 0.002% to 0.5%; and either one or both of Nb and Ti, with the remainder being Fe and unavoidable impurities, wherein Expression (1) and Expression (2) illustrated below are satisfied, an oxide film is formed on a surface thereof, and the oxide film contains Cr, Si, Nb, Ti and Al in a total cationic fraction of 30% or more, 8(C+N)+0.03?Nb+Ti?0.6??(1) Si+Cr+Al+{Nb+Ti?8(C+N)}?15.5??(2).
    Type: Grant
    Filed: March 28, 2012
    Date of Patent: April 4, 2017
    Assignee: NIPPON STEEL & SUMIKIN STAINLESS STEEL CORPORATION
    Inventors: Nobuhiko Hiraide, Fumio Fudanoki, Shunji Sakamoto
  • Patent number: 9523402
    Abstract: The present invention is directed to a stainless steel brake disc which is excellent in toughness, corrosion resistance, and wear resistance, and comprises, in % by mass, 0.030 to 0.080% of C, 0.05% to 1.0% of Si, 1.0 to 1.5% of Mn, 0.035% or less of P, 0.015% or less of S, 11.0 to 14.0% of Cr, 0.01 to 0.50% of Ni, 0.001 to 0.15% of V, less than 0.1% of Nb, 0.05% or less of Ti, 0.05% or less of Zr, 0.05% or less of Al, 0.015 to 0.060% of N, 0.0002% or more and 0.0050% or less of B, and 0.0080% or less of O, wherein an AT value of equation 1 is 0.055 to 0.090, equation 2 is satisfied, a ferrite phase fraction, in which an IQ value of an EBSD pattern is 4,000 or more, is 1% to 15%, a Charpy impact value is 50 J/cm2 or more, and hardness is 32 to 38 HRC. C+0.8(N?B)??(1) PV=1.2Ti+0.8Zr+Nb+1.1Al+O?0.
    Type: Grant
    Filed: February 7, 2014
    Date of Patent: December 20, 2016
    Assignee: Nippon Steel & Sumikin Stainless Steel Corporation
    Inventors: Shinichi Teraoka, Yoshiharu Inoue, Yuji Koyama, Masaaki Kobayashi, Toshio Tanoue
  • Publication number: 20160281187
    Abstract: This high strength austenitic stainless steel having excellent resistance to hydrogen embrittlement includes, in terms of mass %, C: 0.2% or less, Si: 0.2% to 1.5%, Mn: 0.5% to 2.5%, P: 0.06% or less, S: 0.008% or less, Ni: 10.0% to 20.0%, Cr: 16.0% to 25.0%, Mo: 3.5% or less, Cu: 3.5% or less, N: 0.01% to 0.50%; and O: 0.015% or less, with the balance being Fe and unavoidable impurities, in which an average size of precipitates is 100 nm or less and an amount of the precipitates is 0.001% to 1.0% in terms of mass %.
    Type: Application
    Filed: March 23, 2016
    Publication date: September 29, 2016
    Applicant: Nippon Steel & Sumikin Stainless Steel Corporation
    Inventors: Kazuhisa MATSUMOTO, Masaharu HATANO
  • Publication number: 20160230261
    Abstract: An automotive member or a feed oil pipe includes: a member made of a ferritic stainless steel containing predetermined components containing 10.5% to 18.0% of Cr in mass %; a metal fitting made of an aluminized stainless steel sheet, the metal fitting being attached to the member; and a gap structure defined between the member and the metal fitting, the gap structure being exposed to a chloride environment, where the metal fitting has an Al-plating weight per unit area of 20 g/m2 or more and 150 g/m2 or less on a surface corresponding to a gap of the gap structure, and surfaces of the metal fitting and the non-aluminized member other than the gap are coated with a cation electrodeposition coating film having a thickness of 5 ?m to 35 ?m.
    Type: Application
    Filed: September 12, 2014
    Publication date: August 11, 2016
    Applicant: NIPPON STEEL & SUMIKIN STAINLESS STEEL CORPORATION
    Inventors: Hiroshi URASHIMA, Shunji SAKAMOTO, Shinichi TERAOKA, Toshio TANOUE
  • Patent number: 9399809
    Abstract: This hot-rolled ferritic stainless steel sheet has a steel composition containing, in terms of % by mass: 0.02% or less of C; 0.02% or less of N; 0.1% to 1.5% of Si; 1.5% or less of Mn; 0.035% or less of P; 0.010% or less of S; 1.5% or less of Ni; 10% to 20% of Cr; 1.0% to 3.0% of Cu; 0.08% to 0.30% of Ti; and 0.3% or less of Al, with the balance being Fe and unavoidable impurities, and the hot-rolled ferritic stainless steel sheet has a Vickers hardness of less than 235 Hv.
    Type: Grant
    Filed: February 8, 2012
    Date of Patent: July 26, 2016
    Assignee: NIPPON STEEL & SUMIKIN STAINLESS STEEL CORPORATION
    Inventors: Shinichi Teraoka, Masaaki Kobayashi, Yuuji Koyama, Junichi Hamada, Norihiro Kanno, Yoshiharu Inoue, Ken Kimura, Jun Takahashi, Shigeyuki Gotoh
  • Patent number: 9365914
    Abstract: A nitrogen-rich two-phase stainless steel that has corrosion resistance equal to that of standard type of two-phase stainless steel and is not susceptible to corrosion in a welding heat-affected part, wherein the austenite phase area ratio is 40-70%, the PI value expressed by formula (1) is 30-38, the NI value expressed by formula (2) is 100-140, and the ?pre expressed by formula (3) is 1350-1450. (1) PI=Cr+3.3Mo+16N (2) NI=(Cr+Mo)/N.
    Type: Grant
    Filed: March 9, 2012
    Date of Patent: June 14, 2016
    Assignee: NIPPON STEEL & SUMIKIN STAINLESS STEEL CORPORATION
    Inventors: Yusuke Oikawa, Shinji Tsuge, Hiroshige Inoue, Ryo Matsuhashi
  • Publication number: 20160097114
    Abstract: A heat-resistant cold rolled ferritic stainless steel sheet containing, in mass %, 0.02% or less of C, 0.1% to 1.0% of Si, greater than 0.6% to 1.5% of Mn, 0.01% to 0.05% of P, 0.0001% to 0.0100% of S, 13.0% to 20.0% of Cr, 0.1% to 3.0% of Mo, 0.005% to 0.20% of Ti, 0.3% to 1.0% of Nb, 0.0002% to 0.0050% of B, 0.005% to 0.50% of Al, 0.02% or less of N, with the balance being Fe and inevitable impurities, in which {111}-oriented grains are present at an area ratio of 20% or greater in a region from a surface layer to t/4 (t is a sheet thickness), {111}-oriented grains are present at an area ratio of 40% or greater in a region from t/4 to t/2, and {011}-oriented grains are present at an area ratio of 15% or less in the entire region in a thickness direction.
    Type: Application
    Filed: December 15, 2015
    Publication date: April 7, 2016
    Applicant: Nippon Steel & Sumikin Stainless Steel Corporation
    Inventors: Junichi HAMADA, Yuji KOYAMA, Yoshiharu INOUE, Tadashi KOMORI, Fumio FUDANOKI, Toshio TANOUE, Naoto ONO
  • Patent number: 9289964
    Abstract: An alloy-saving type high purity ferritic stainless steel sheet, comprising a steel sheet which contains, by mass %, C: 0.001 to 0.03%, Si: 0.01 to 1%, Mn: 0.01 to 1.5%, P: 0.005 to 0.05%, S: 0.0001 to 0.01%, Cr: 13 to 30%, N: 0.001 to 0.03%, Al: 0.005 to 1%, and Sn: 0.01 to 1% and has a balance of Fe and unavoidable impurities and which has a surface film, the surface film containing one or both of Al and Si in a total of 5 to 50 at % and Sn, an average concentration of Cr in the surface film being 1.1 to 3 times the concentration of Cr inside the steel sheet, and the surface film having a surface roughness of an arithmetic average roughness Ra of 0.1 to 1.5 ?m.
    Type: Grant
    Filed: March 5, 2012
    Date of Patent: March 22, 2016
    Assignee: NIPPON STEEL & SUMIKIN STAINLESS STEEL CORPORATION
    Inventors: Masaharu Hatano, Hiroyuki Matsuyama, Akihito Yamagishi, Naoto Hansaki, Eiichiro Ishimaru
  • Publication number: 20160079455
    Abstract: Provided is a stainless steel substrate for a solar cell, the stainless steel substrate including, by mass %, Cr: 9% to 25%, C: 0.03% or less, Mn: 2% or less, P: 0.05% or less, S: 0.01% or less, N: 0.03% or less, Al: 0.005% to 5.0%, Si: 0.05% to 4.0%, and a remainder including Fe and unavoidable impurities, in which an oxide film containing (i) Al2O3 in an amount of 50% or more or containing (i) Al2O3 and (ii) SiO2 in a total amount of 50% or more is formed on a surface of stainless steel having a composition which contains Al: 0.5% or more and/or Si: 0.4% or more and satisfies the following expression (1). Cr+10Si+Mn+Al>24.
    Type: Application
    Filed: May 2, 2014
    Publication date: March 17, 2016
    Applicant: NIPPON STEEL & SUMIKIN STAINLESS STEEL CORPORATION
    Inventors: Masaharu HATANO, Eiichiro ISHIMARU, Kenji HATTORI