Patents Assigned to Super Sonic Imagine
  • Patent number: 8347692
    Abstract: Method for rheological characterization of a viscoelastic medium, with the following steps: (a) an excitation step during which a vibratory excitation is generated in the viscoelastic medium leading to a deformation of the medium, (b) a deformation measurement step during which the deformation of the medium caused by the excitation is observed, (c) and a characterization step during which at least one non-zero power parameter y is determined such that a rheological parameter of the medium x is equal to x(f)=a+b·fy, where f is the frequency, a is a real number and b a non-zero scale parameter. It is thus possible to obtain mapping of the power parameter y.
    Type: Grant
    Filed: June 23, 2008
    Date of Patent: January 8, 2013
    Assignee: Super Sonic Imagine
    Inventors: Ralph Sinkus, Michaël Tanter, Mathias Fink, Jeremy Bercoff, David Savery
  • Patent number: 8310132
    Abstract: The invention relates to an insonification device (100) comprising a plurality of elementary ultrasonic transducers (110) each comprising at least one electro-acoustic element (111) and distributed on a chassis (120, 140) so that the electro-acoustic elements (111) are distributed on a so-called front surface (120?) of the device (100) intended to be placed facing the medium to be insonified. According to the invention, as each transducer (110) comprises a longitudinal body (113) made in a heat conducting material at the so-called front end of which the electro-acoustic element (111) is placed, the chassis (120, 140) comprises a sealed cooling chamber (130) placed behind the front surface (120?), crossed by the bodies of the transducers (113) and intended to be gone through by a coolant fluid flow.
    Type: Grant
    Filed: March 17, 2009
    Date of Patent: November 13, 2012
    Assignee: Super Sonic Imagine
    Inventors: Yves Martin, Mathieu Pernot
  • Patent number: 8155725
    Abstract: The invention concerns a method for optimizing the focusing of waves in a zone of interest of a medium, with the waves being emitted by a network of sources to the medium through an aberration-inducing element that introduces an initially indeterminate phase shift. The method according to the invention proposes to use M?1 successive modifications of the emitted wave, each giving rise to a perturbation. According to the invention, the M perturbations are measured in the zone of interest at each modification of the phase and/or amplitude distributions, and these measurements are used to deduce optimal focusing characteristics to maximize the perturbation induced in the zone of interest.
    Type: Grant
    Filed: February 20, 2008
    Date of Patent: April 10, 2012
    Assignee: Super Sonic Imagine
    Inventors: Mathieu Pernot, Mathias Fink, Mickaël Tanter, Gabriel Montaldo, Jean-Francois Aubry, Ralph Sinkus
  • Patent number: 8037766
    Abstract: The present invention relates to a method for generating mechanical waves within a viscoelastic medium (11) comprising a step of generating an acoustic radiation force (15) within the viscoelastic medium (11) by application of acoustic waves focused on an interface (13) delimiting two zones (11, 14) having distinct acoustic properties.
    Type: Grant
    Filed: October 25, 2007
    Date of Patent: October 18, 2011
    Assignee: Super Sonic Imagine
    Inventors: Jérémy Bercoff, Claude Cohen-Bacrie, Mathieu Pernot, David Savery
  • Publication number: 20110051554
    Abstract: The invention concerns a device (1) for the insonification of an environment or medium, which is designed to generate a beam of focussed waves around a point in a so-called focus zone (20), used for imaging the medium or changing the properties of the medium, with the insonification device (1) having an intrinsic or extrinsic support structure on which is installed a network of a predetermined number of ultrasound transducers (12) that are designed to be controlled independently for generation of the focussed wave beam. According to the invention, the transducers (12) used for the generation of the focussed wave beam are located in a homogeneous spatial distribution along at least two concentric spirals (11) that are wound onto a three-dimensional concave area (10) whose shape and size are chosen to allow optimal focusing of the beam at a predetermined focal length, and whose concave side is oriented toward the focus zone (20).
    Type: Application
    Filed: November 12, 2008
    Publication date: March 3, 2011
    Applicant: SUPER SONIC IMAGINE
    Inventors: Francois Varray, Mathieu Pernot, Yves Martin
  • Publication number: 20110043434
    Abstract: The invention concerns an electronic display system, intended to be coupled with ultrasound imaging equipment capable of capturing an image of a medium, said system comprising a first monitor to display an ultrasound image such as captured by the ultrasound imaging equipment and image processing means.
    Type: Application
    Filed: March 3, 2009
    Publication date: February 24, 2011
    Applicant: SUPER SONIC IMAGINE
    Inventors: Pascal Roncalez, Pierre-Lin Laneyrie
  • Publication number: 20110028838
    Abstract: Method for measuring a physical parameter in soft tissues of a mammal, in which a mechanical shear wave is propagated through the soft tissues and observation of the propagation leads to determine values of a shear wave propagation parameter. The physical parameter is computed on the basis of these values.
    Type: Application
    Filed: July 31, 2009
    Publication date: February 3, 2011
    Applicants: SUPER SONIC IMAGINE, CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE-CNRS-, INSERM - INSTITUT NATIONAL DE LA SANTE ET DE LA RECHERCHE MEDICALE, UNIVERSITE PARIS DIDEROT - PARIS 7
    Inventors: Mathieu Pernot, Mickael Tanter, Mathieu Couade, Jean-Luc Gennisson, Mathias Fink
  • Patent number: 7857762
    Abstract: The invention relates to a method of generating a predetermined objective wave field in a medium using a first network of transducers T1-Tn). The inventive method consists in first using each transducer i of the first network to emit an approximation of the signal ei(t). Subsequently, each transducer of a second network of transducers (T?1-T?m) is used to emit an error signal corresponding to the time reversal of the difference between the signals captured from said first emission and objective signals. Finally, approximation ei(t) is corrected by subtracting the time reversal of the signal captured by each transducer i using the error signal.
    Type: Grant
    Filed: May 28, 2003
    Date of Patent: December 28, 2010
    Assignee: Super Sonic Imagine
    Inventors: Gabriel Montaldo, Mathias Fink, Mickaël Tanter
  • Publication number: 20100312116
    Abstract: A Method for measuring heart contractility of a patient, in which a mechanical shear wave is propagated through the heart and observation of the propagation leads to determine a shear wave propagation parameter representative of the elasticity of the heart is disclosed. The value of the propagation parameter at the end of a systole is sampled, which leads to a parameter representative of the end systolic elastance.
    Type: Application
    Filed: June 4, 2009
    Publication date: December 9, 2010
    Applicants: Super Sonic Imagine, Centre National De La Recherce
    Inventors: Mathieu Pernot, Mickaël Tanter, Mathieu Couade, Mathias Fink
  • Patent number: 7837623
    Abstract: A non-invasive method of obtaining a target soundwave field in the brain by means of an array of transducers positioned outside the skull, the method comprising a training stage during which, on the basis of a three-dimensional image giving the porosity of the skull at all points, digital simulation is used to determine individual sound signals to be emitted by the transducers in order to obtain the target soundwave field in the brain. After the training stage, the array of transducers is used to locate the position of the array of transducers relative to the skull by echography and to ensure that the array of transducers is accurately positioned.
    Type: Grant
    Filed: August 20, 2003
    Date of Patent: November 23, 2010
    Assignee: Super Sonic Imagine
    Inventors: Jean-François Aubry, Mathias Fink, Mickaël Tanter
  • Publication number: 20100222678
    Abstract: The invention relates to a method for measuring a mean visco-elasticity value for a soft material. Said method using a single probe carrying at least one transducer comprises the steps of: a) inducing, in a constraint zone, at least one burst of mechanical vibrations in order to generate internal shear waves in the tissue propagating from said constraint zone into the tissue, b1) measuring, with said transducer, the transient tissue displacements in at least one first measurement zone in the tissue, said first measurement zone being located away from said constraint zone, c) estimating a mean visco-elasticity of the region of the tissue situated between the constraint zone and the first measurement zone from said measured transient tissue displacements of the tissue in the first measurement zone.
    Type: Application
    Filed: May 16, 2007
    Publication date: September 2, 2010
    Applicants: SUPER SONIC IMAGINE, CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE (CNRS)
    Inventors: Jeremy Bercoff, David Savery, Mickaël Tanter, Jean-Luc Gennisson, Mathias Fink, Claude Cohen-Bacrie
  • Publication number: 20100170342
    Abstract: Method for rheological characterization of a viscoelastic medium, comprising the following steps: (a) an excitation step during which a vibratory excitation is generated in the viscoelastic medium leading to a deformation of the medium, (b) a deformation measurement step during which the deformation of the medium caused by the excitation is observed, (c) and a characterization step during which at least one non-zero power parameter y is determined such that a rheological parameter of the medium x is equal to x (f)=a+b.fy, where f is the frequency, a is a real number and b a non-zero scale parameter. It is thus possible to obtain mapping of the power parameter y.
    Type: Application
    Filed: June 23, 2008
    Publication date: July 8, 2010
    Applicants: SUPER SONIC IMAGINE, CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE - CNRS-
    Inventors: Ralph Sinkus, Mickaël Tanter, Matthias Fink, Jeremy Bercoff, David Savery
  • Publication number: 20100168566
    Abstract: The invention relates to a method and a device for imaging a visco-elastic medium. The method comprises an excitation step during which an internal mechanical stress is generated in excitation zone and an imaging step of acquiring signals during the movements generated by the mechanical stress in the visco-elastic medium in response to the internal mechanical stress in an imaging zone that includes the excitation zone. According to the invention, the method further comprises a step of calculating a quantitative index associated with the rheological properties of the visco-elastic medium at at least one point of the imaging zone situated at a given depth outside the excitation zone.
    Type: Application
    Filed: March 22, 2007
    Publication date: July 1, 2010
    Applicant: Super Sonic Imagine
    Inventors: Jérémy Bercoff, David Savery, Claude Cohen-Bacrie, Jacques Souquet
  • Publication number: 20090149760
    Abstract: The invention relates to an ultrasonic imaging probe for imaging a medium (10), comprising two types of transducers, characterized in that the first type of transducer(s) (1) is dedicated to ultrasonic imaging of the medium (10), and the second type of transducer(s) (2) is dedicated to generating a stress producing at least one transient modification of the imaged medium (10), both types of transducer(s) (1, 2) being able to operate at least in a so-called coupled mode where the first type of transducer(s) (1) operates in a synchronized way with the second type of transducer(s) (2) so as to image the time course of the transient modification of the medium (10).
    Type: Application
    Filed: August 3, 2007
    Publication date: June 11, 2009
    Applicant: SUPER SONIC IMAGINE
    Inventors: Jeremy Bercoff, Claude Cohen-Bacrie, Jacques Souquet
  • Publication number: 20090093724
    Abstract: The invention concerns a method for optimizing the focusing of waves in a zone of interest of a medium, with the waves being emitted by a network of sources to the medium through an aberration-inducing element that introduces an initially indeterminate phase shift. The method according to the invention proposes to use M?1 successive modifications of the emitted wave, each giving rise to a perturbation. According to the invention, the M perturbations are measured in the zone of interest at each modification of the phase and/or amplitude distributions, and these measurements are used to deduce optimal focusing characteristics to maximize the perturbation induced in the zone of interest.
    Type: Application
    Filed: February 20, 2008
    Publication date: April 9, 2009
    Applicant: SUPER SONIC IMAGINE
    Inventors: Mathieu Pernot, Mathias Fink, Mickael Tanter, Gabriel Montaldo, Jean-Francois Aubry, Ralph Sinkus
  • Publication number: 20080276709
    Abstract: The present invention relates to a method for generating mechanical waves within a viscoelastic medium (11) comprising a step of generating an acoustic radiation force (15) within the viscoelastic medium (11) by application of acoustic waves focussed on an interface (13) delimiting two zones (11, 14) having distinct acoustic properties.
    Type: Application
    Filed: October 25, 2007
    Publication date: November 13, 2008
    Applicant: SUPER SONIC IMAGINE
    Inventors: Jeremy Bercoff, Claude Cohen-Bacrie, Mathieu Pernot, David Savery