Patents Assigned to Superior Essex Communications LP
  • Patent number: 7813605
    Abstract: A data communication cable can comprise multiple pairs of twisted conductors. A jacket that extends along the outside surface of the cable can define a longitudinal core, internal to the cable. The conductor pairs can be disposed in the core of the cable along with a foam matrix or a porous filler, with the matrix and the conductors occupying essentially all of the volume of the core. The foam matrix can hold each conductor pair in a respective location within the cable core to control signal crosstalk on each pair. A co-extrusion process can produce the cable via simultaneously extruding the foam matrix and the jacket. A pulling apparatus can feed the conductor pairs though respective ports of an extrusion head-and-die assembly. As one extruder encases the moving conductor pairs in the foam matrix, another extruder forms the jacket over the matrix and the embedded conductors.
    Type: Grant
    Filed: April 7, 2009
    Date of Patent: October 12, 2010
    Assignee: Superior Essex Communications, LP
    Inventor: Jeffrey H. Mumm
  • Patent number: 7750243
    Abstract: A water blocked communication cable has an outer jacket defining an interior space, a plurality of conductors, such as a plurality of twisted conductor pairs, disposed within the interior space, and a thixotropic, cold pumpable filling compound disposed within the interior space between the plurality of conductors and the outer jacket. The filling compound consists, for example, of a refined mineral oil base and an organic polymeric gelling agent with a dispersion of micro spheres and has a dielectric constant not greater than 1.8.
    Type: Grant
    Filed: March 10, 2009
    Date of Patent: July 6, 2010
    Assignee: Superior Essex Communications LP
    Inventors: Jeffrey H. Mumm, Kristina Elyse Harrell Anderson
  • Patent number: 7590322
    Abstract: A fiber optic cable can inhibit water, that may inadvertently enter the cable, from damaging the cable's optical fibers. The fiber optic cable can comprise a buffer tube defining an interior volume extending along the fiber optic cable. Optical fibers can be disposed in the interior volume of the buffer tube, along with water-swellable materials, such as tapes and yarns. The interior volume can be dry or free from water-blocking gels or fluids. The water-swellable materials can provide the fiber optic cable with an unexpected level of protection from seawater. The water-swellable materials can, for example, limit flow of seawater along the interior volume. In an exemplary embodiment, progression of seawater in the interior volume be limited to three meters or less for a twenty four hour test period during which the seawater is under about one meter of head pressure.
    Type: Grant
    Filed: March 7, 2008
    Date of Patent: September 15, 2009
    Assignee: Superior Essex Communications LP
    Inventors: James J. Puzan, Christopher W. McNutt, Jeffrey S. Laws
  • Patent number: 7577329
    Abstract: A data communication cable can comprise multiple pairs of twisted conductors. A jacket that extends along the outside surface of the cable can define a longitudinal core, internal to the cable. The conductor pairs can be disposed in the core of the cable along with a foam matrix or a porous filler, with the matrix and the conductors occupying essentially all of the volume of the core. The foam matrix can hold each conductor pair in a respective location within the cable core to control signal crosstalk on each pair. A co-extrusion process can produce the cable via simultaneously extruding the foam matrix and the jacket. A pulling apparatus can feed the conductor pairs though respective ports of an extrusion head-and-die assembly. As one extruder encases the moving conductor pairs in the foam matrix, another extruder forms the jacket over the matrix and the embedded conductors.
    Type: Grant
    Filed: March 14, 2007
    Date of Patent: August 18, 2009
    Assignee: Superior Essex Communications LP
    Inventor: Jeffrey H. Mumm
  • Patent number: 7532794
    Abstract: A fiber optic cable can comprise a tape that extends along the cable and that facilitates locating the cable when the cable is buried underground. The tape can comprise a film of nonconductive material, such as plastic, with an overlaying pattern of conductive patches. The conductive patches can comprise regions of metallic film laminated with or otherwise adhering to the nonconductive film. Spacing between the conductive patches can provide patch-to-patch isolation so that the ends of the cable are electrically isolated from one another. Field personnel can locate the underground cable by scanning the ground with a metal detector.
    Type: Grant
    Filed: February 9, 2007
    Date of Patent: May 12, 2009
    Assignee: Superior Essex Communications LP
    Inventor: Thomas C Cook
  • Patent number: 7529450
    Abstract: A fiber optic cable can comprise small spheres or balls disposed in the cable's interstitial spaces, for example between the cable's optical fibers and a surrounding buffer tube. The spheres can comprise foam rubber, closed-cell or open-cell porous polymer, or some other soft material. Typical diameters for the spheres can be in a range of 1 to 2.5 millimeters. A soft composition of the spheres can cushion the optical fibers and physically impede water ingress into the cable. Additional fiber protection can arise from the ability of the loose spheres to rotate individually, in a ball-bearing effect. Thus, sphere-to-sphere motion can absorb physical stresses associated with bending, twisting, bumping, and stretching the cable during installation, thereby shielding the fibers from damage.
    Type: Grant
    Filed: February 23, 2007
    Date of Patent: May 5, 2009
    Assignee: Superior Essex Communications LP
    Inventor: Thomas C. Cook
  • Patent number: 7499617
    Abstract: A fiber optic cable can comprise spheres or balls that are coated with a water absorbent material, such as a super absorbent polymer (“SAP”). The spheres can provide clean and efficient carriers for introducing SAP into the cable during manufacturing. The spheres can have a diameter in a range of 20 microns to 2.5 millimeters and can be disposed in the cable's interstitial spaces, for example between the cable's optical fibers and a surrounding buffer tube. The SAP material can adhere to the spheres as a cross-linked coating or via electrostatic charge, for example. Beyond absorbing any water that may enter the cable, the spheres can provide cushioning or mechanical protection for the optical fibers. When the cable receives stress, motion among the spheres can absorb the stress to shield the fibers from damage.
    Type: Grant
    Filed: February 23, 2007
    Date of Patent: March 3, 2009
    Assignee: Superior Essex Communications LP
    Inventor: Thomas C. Cook
  • Publication number: 20080219627
    Abstract: A fiber optic cable can inhibit water, that may inadvertently enter the cable, from damaging the cable's optical fibers. The fiber optic cable can comprise a buffer tube defining an interior volume extending along the fiber optic cable. Optical fibers can be disposed in the interior volume of the buffer tube, along with water-swellable materials, such as tapes and yarns. The interior volume can be dry or free from water-blocking gels or fluids. The water-swellable materials can provide the fiber optic cable with an unexpected level of protection from seawater. The water-swellable materials can, for example, limit flow of seawater along the interior volume. In an exemplary embodiment, progression of seawater in the interior volume be limited to three meters or less for a twenty four hour test period during which the seawater is under about one meter of head pressure.
    Type: Application
    Filed: March 7, 2008
    Publication date: September 11, 2008
    Applicant: Superior Essex communications LP
    Inventors: James J. Puzan, Christopher W. McNutt, Jeffrey S. Laws
  • Publication number: 20080204235
    Abstract: A communication cable, such as an optical fiber cable, can comprise radio frequency identification (“RFID”) elements that facilitate locating and identifying the cable. The RFID elements can provide information about the cable from a remote location, for example when the cable is spooled in a warehouse, buried underground, suspended overhead, or installed in a cable tray. The RFID elements can be attached at defined locations along a plastic tape within the cable. Each RFID element can comprise an antenna that extends lengthwise along the tape and/or circuit traces or other components that are imprinted on the tape. Each RFID element can have a unique code or address, thereby providing a record of manufacturing parameters that are specific to that cable. Also, the unique code can be specific to an incremental length of cable. Accordingly, the RFID elements can yield information about each fiber segment of the cable.
    Type: Application
    Filed: February 22, 2007
    Publication date: August 28, 2008
    Applicant: Superior Essex Communications LP
    Inventor: Thomas C. Cook
  • Publication number: 20080199134
    Abstract: An optical fiber or a cable can comprise marks that uniquely identify the fiber or cable and that facilitate tracing materials thereof back to manufacturing. The marks can extend lengthwise along the fiber or cable, for example from end-to-end. A user of the optical fiber or cable can make an identification from an end-on view. The marks can be encoded with information based on the number of marks, the widths of the individual marks, and/or the spacing between each mark. The marks can comprise a continuous barcode that is integrated into a material of the optical fiber or cable. The glassy material of a fiber optic preform can comprise an embedded set of enlarged marks, so that drawing optical fiber from the preform pulls marks of appropriate size into the fiber's cladding material. The marks can alternatively comprise encoded stripes extruded into a cable jacket.
    Type: Application
    Filed: February 15, 2007
    Publication date: August 21, 2008
    Applicant: Superior Essex Communications LP
    Inventor: Thomas C. Cook
  • Publication number: 20080189940
    Abstract: A data communication cable can comprise multiple pairs of twisted conductors within an outer jacket. A shielding can be disposed between the conductors and the outer jacket. The shielding may be an asymmetrically clad alloy steel (ACAS) tape wherein the copper cladding of the shield is thicker on a first side and thinner on a second side. When the tape is positioned between the conductors and the jacket, the thicker copper layer can be positioned adjacent to the conductors. The thicker copper layer can reduce the capacitive coupling between the conductors and the steel layer of the shielding tape without the added expense of an inner jacket or increased insulation thickness between the conductors and the shielding tape. The tape may also reduce lightning noise and other electromagnetic interference. Additionally, copper layers of the tape can help prevent corrosion of the inner steel layer.
    Type: Application
    Filed: February 14, 2007
    Publication date: August 14, 2008
    Applicant: Superior Essex Communications LP
    Inventor: James S. Tyler
  • Patent number: 7346257
    Abstract: The present invention provides a communication cable buffer tube having a flexural modulus ranging from about 180 kpsi to about 280 kpsi.
    Type: Grant
    Filed: December 15, 2006
    Date of Patent: March 18, 2008
    Assignee: Superior Essex Communications, LP
    Inventors: Jeffrey H. Mumm, Christopher W. McNutt, Jeffrey Scott Laws
  • Patent number: 7269318
    Abstract: Herein described is a method and system for identifying buffer tubes in a cable by including at least one colored filling material within a transparent or translucent buffer tube.
    Type: Grant
    Filed: March 23, 2004
    Date of Patent: September 11, 2007
    Assignee: Superior Essex Communications, LP
    Inventor: Thomas Christopher Cook
  • Patent number: 7256351
    Abstract: A communications cable having increased fire resistance and reduced attenuation and crosstalk includes a core having at least one insulated electrical conductor, and a jacket having an inner surface and a plurality of ribs projecting radially inward from the inner surface, the ribs separated from one another by adjacent channels that extend longitudinally along the length of the cable.
    Type: Grant
    Filed: January 28, 2005
    Date of Patent: August 14, 2007
    Assignee: Superior Essex Communications, LP
    Inventors: Scott Dillon, Douglas S. Warren, Christopher W. McNutt
  • Patent number: 7193155
    Abstract: A communications apparatus for transmitting various communication signals is described. The communications apparatus contains at least two conductors or fibers where the first conductor or fiber comprises a first color and the second conductor or fiber comprises a second color having a lighter tint of the first color. In an embodiment of the invention, using this scheme of a dark shade of a color for one of the conductors or fibers and a lighter color for the other conductor or fiber, the conductors or fibers can always be identified as a pair even after they have been untwisted (and even when the remaining pairs in the cable become untwisted). The invention does not use bandmarks or stripes in the insulation of the second conductor, thereby avoiding the accompanying limitations associated with bandmarks and stripes.
    Type: Grant
    Filed: October 29, 2003
    Date of Patent: March 20, 2007
    Assignee: Superior Essex Communications LP
    Inventors: T. Mike McMillan, Scott Dillon
  • Patent number: 7084348
    Abstract: A plenum cable for transmitting various communication signals is described. The cable contains a plurality of twisted pairs of insulated conductors with an insulation that contains substantially no FEP or fluoropolymers. Rather, the insulation contains one or more layers containing an polyolefin material and the outermost layer comprises a flame-retardant polyolefin material. The cable can use a standard plenum-grade PVC jacket. Using this design for the cable lowers the cost by eliminating FEP while using a standard, plenum-grade PVC jacket that requires no modifications.
    Type: Grant
    Filed: February 20, 2003
    Date of Patent: August 1, 2006
    Assignee: Superior Essex Communications LP
    Inventor: Scott Dillon
  • Patent number: 6882784
    Abstract: A communication cable for transmitting various communication signals. The cable comprises buffer tubes for optical fiber cables that are robust, crush resistant, flexible, and cost effective. To obtain these properties, the buffer tubes contain a polymeric mixture of high impact polystyrene and styrene-butadiene-styrene. The polymeric mixture for the buffer tubes may also contain crystalline polystyrene and/or acrylonitrile-butadiene-styrene.
    Type: Grant
    Filed: September 11, 2003
    Date of Patent: April 19, 2005
    Assignee: Superior Essex Communications LP
    Inventors: Jeffrey H. Mumm, Christopher W. McNutt, Jeffrey Scott Laws