Abstract: An embodiment of the invention includes an electrosurgical jaw structure that carries cooperating PTC bodies in both series and parallel circuit components for controlled RF energy application to engaged tissue to effectively weld tissue.
Type:
Application
Filed:
September 3, 2004
Publication date:
May 5, 2005
Applicant:
SurgRx, Inc.
Inventors:
Csaba Truckai, John Shadduck, Bruno Strul
Abstract: An electrosurgical instrument that allows precise modulation of active Rf density in an engaged tissue volume. The working end of the instrument has a tissue-contacting surface of a conductive-resistive matrix that is variably resistive depending on its temperature. The matrix comprises a positive temperature coefficient (PTC) polymeric material hat exhibits very large increases in resistivity as any local portion increases beyond a selected temperature. In a method of use, the polymeric PTC material senses the temperature of engaged tissue in a manner akin to pixel-by-pixel sensing and thereby changes its resistance in a corresponding pixel-by-pixel manner. The instrument further carries cooling means to cause accelerated thermal relaxation of the PTC matrix during use to make the engagement surface highly responsive to temperature changes that in turn alter the matrix between being electrically conductive and electrically resistive.
Abstract: A surgical system for controlled application of ultrasound energy to engaged tissue volumes for creating effective biological welds or seals in tissue. The invention provides an ultrasound transmission assembly including piezoelectric elements coupled to an elongate waveguide that is reciprocatable in an interior of an introducer. The reciprocatable waveguide assembly of the invention is adapted to have multiple functionality: (i) to couple ultrasound energy to both opposing jaws to thereby deliver energy to both sides of engaged tissues to create uniform thermal weld effects; (ii) to apply very high compressive forces to captured tissues over the length of elongate jaws by engaging substantially the entire length of the jaws, and (iii) to transect the captured tissues contemporaneous with the delivery of energy to create the thermal weld.
Type:
Grant
Filed:
September 19, 2001
Date of Patent:
August 10, 2004
Assignee:
SURGRx LLC
Inventors:
Csaba Truckai, John H. Shadduck, Bruno Strul
Abstract: A working end of a surgical instrument that carries first and second jaws for delivering energy to tissue. In a preferred embodiment, at least one jaw of the working end defines a tissue-engagement plane that contacts the targeted tissue. The cross-section of the engagement plane reveals that it defines a surface conductive portion and an elastomeric body portion. The elastomeric body portion is adapted to flex, deflect and extend laterally when engaging tissue to atraumatically engage tissue at the edges of the working end to create a smooth transition between welded tissue and undamaged tissue. The jaws can further carry a variably resistive matrix of a temperature-sensitive resistive material or a pressure-sensitive resistive material. An interior of the jaw carries a conductive material or electrode that is coupled to an Rf source and controller.
Type:
Grant
Filed:
December 3, 2002
Date of Patent:
August 3, 2004
Assignee:
SurgRx, Inc.
Inventors:
Csaba Truckai, James A. Baker, John H. Shadduck
Abstract: An electrosurgical medical device and method for creating thermal welds in engaged tissue. In one embodiment, at least one jaw of the instrument defines a tissue engagement plane that carries a recessed central portion. In another embodiment, the controller coupled to the Rf source is adapted to switch from a power control operational mode to a voltage controlled operational mode at a selected transition impedance level.