Abstract: 3D printing methods for workpiece supports, support structures, and workpieces having supports are disclosed. In an embodiment, a printing method of a workpiece support includes the following steps. (1) Configuring a first printing scheme by a printing software installed in a printing apparatus and configuring a workpiece support model according to the first printing scheme. (2) Printing a workpiece support skeleton according to the first printing scheme and the workpiece support model by the printing apparatus and obtaining the workpiece support by filling the workpiece support skeleton. Optionally, step (2) includes controlling a second nozzle to eject a ceramic wire according to the first printing scheme and the support model and controlling a first nozzle to eject a linear material according to the support model to fill the workpiece support skeleton.
Abstract: Disclosed are methods and systems for optimizing printing of a ceramic isolation layer. In some embodiments, the method includes the following steps: preparing a workpiece before printing; printing the workpiece by an optimal printing solution, the optimal printing solution satisfying a setting of key data when printing the ceramic isolation layer; and processing the workpiece after printing to obtain a finished workpiece. In other embodiments, the optimal printing solution is determined by the following steps: printing and processing the ceramic isolation layer and the workpiece isolated by the ceramic isolation layer for multiple times; adjusting the key data by determining a strength of the ceramic isolation layer after printing and deformation data of the workpiece; selecting the ceramic isolation layer parameters and the printing parameters; and taking the setting of the key data as the optimal solution when the deformation data reaches a preset threshold.
Type:
Grant
Filed:
August 18, 2021
Date of Patent:
May 10, 2022
Assignee:
Suzhou Fusion Tech Co., Ltd.
Inventors:
Jun Wang, Hanshen Wang, Jingwei Hu, Hua Feng, Jianzhe Li, Jinjing Zhang, Xiaoyu Wu, Wangping Long
Abstract: 3D printing methods for workpiece supports, support structures, and workpieces having supports are disclosed. In an embodiment, a printing method of a workpiece support includes the following steps. (1) Configuring a first printing scheme by a printing software installed in a printing apparatus and configuring a workpiece support model according to the first printing scheme. (2) Printing a workpiece support skeleton according to the first printing scheme and the workpiece support model by the printing apparatus and obtaining the workpiece support by filling the workpiece support skeleton. Optionally, step (2) includes controlling a second nozzle to eject a ceramic wire according to the first printing scheme and the support model and controlling a first nozzle to eject a linear material according to the support model to fill the workpiece support skeleton.
Abstract: Disclosed are methods and systems for optimizing printing of a ceramic isolation layer. In some embodiments, the method includes the following steps: preparing a workpiece before printing; printing the workpiece by an optimal printing solution, the optimal printing solution satisfying a setting of key data when printing the ceramic isolation layer; and processing the workpiece after printing to obtain a finished workpiece. In other embodiments, the optimal printing solution is determined by the following steps: printing and processing the ceramic isolation layer and the workpiece isolated by the ceramic isolation layer for multiple times; adjusting the key data by determining a strength of the ceramic isolation layer after printing and deformation data of the workpiece; selecting the ceramic isolation layer parameters and the printing parameters; and taking the setting of the key data as the optimal solution when the deformation data reaches a preset threshold.
Type:
Application
Filed:
August 18, 2021
Publication date:
March 3, 2022
Applicant:
Suzhou Fusion Tech Co., Ltd.
Inventors:
Jun Wang, Hanshen Wang, Jingwei Hu, Hua Feng, Jianzhe Li, Jinjing Zhang, Xiaoyu Wu, Wangping Long