Abstract: A turbine rotor for a wind power plant or a hydropower plant with a direct-drive generator for converting the energy in flowing wind or water into electrical energy wherein the wind or hydropower plant comprises a turbine rotor and a stator and wherein the turbine rotor further comprises a ring-shaped hub (6) having an axis of rotation that coincides with the center axis of the stator and wherein the turbine rotor comprises at least one rotor blade, which rotor blade is arranged on the ring-shaped hub. The turbine rotor is also intended to be used as a propeller for a craft.
Abstract: An arrangement for a floating wind power station (1) tower (3) which floats in a substantially vertical position in that the effective centre of gravity of the tower (3) is below the centre of buoyancy of the tower (3), and wherein a machine house (13) including rotor (15) is non-rotatably connected to the tower (3) and the tower (3) is articulatedly connected to the seabed (5), wherein the tower (3) is rotatable about a tower axis of rotation (29) in that lower part (21) of the tower (3) is provided with a swivel joint (27a or 27b) that is designed to essentially absorb vertical tensile forces.
Abstract: A method which continuously reduces the variations of the rotor axial force and thus reduces fatigue loads on rotor blades and tower, whilst the resultant output to the generator is not significantly affected or is maintained within acceptable limits in relation to limitations of the drive gear, generator and power grid. A method of using the rotor axial force to actively counter the motions of a floating power plant. The method of using the rotor axial force to actively counter the motions of a floating power plant. The method also describes how rotational forces about the vertical axis (12) of the tower (4) are controlled and countered by cyclic variation of pitch angles and associated forces on the individual rotor blade. The method also describes how the aerodynamic force variation on each individual blade as a consequence of different wind velocities at different heights (vertical wind shear) and in the horizontal direction parallel to the rotor plane (horizontal wind shear) can be reduced.
Abstract: A wind-driven power station mounted floating in deep water, comprising a machine house (8) including a generator (not s shown), regulating devices (not shown), rotor axle (9) and rotor blade (10), in which the machine house (8) is mounted at a tower (2) that mainly is floating in an upright position, and where the stability of the tower (2) is provided by means of ballast (5, 6) being placed in the lower part of the tower (2). The power station is kept in position and stabilized by means of anchor systems (12, 13, 14, 15, alternatively 16, 17, 18).