Abstract: The invention relates to a method for maintaining the temperature of fluid media in pipes even in the event of an interruption of the fluid media flow. In a first step, a heat reservoir layer (1) is produced comprising a latent heat reservoir material (2) and a matrix material (3). In a second step, the heat reservoir layer (1) is either arranged around a pipe (4) and subsequently encased with a heat damping material (5) or the heat reservoir layer (1) is brought into contact with heat damping material (5), whereby a heat reservoir damper composite (51) is obtained, and the pipe (4) is then encased with the heat reservoir damper composite (51) such that the heat reservoir layer (1) of the heat reservoir damper composite (51) lies between the pipe (4) and the heat damping material (5) of the heat reservoir damping composite (51).
Abstract: The invention relates to a method for maintaining the temperature of fluid media in pipes even in the event of an interruption of the fluid media flow. In a first step, a heat reservoir layer (1) is produced comprising a latent heat reservoir material (2) and a matrix material (3). In a second step, the heat reservoir layer (1) is either arranged around a pipe (4) and subsequently encased with a heat damping material (5) or the heat reservoir layer (1) is brought into contact with heat damping material (5), whereby a heat reservoir damper composite (51) is obtained, and the pipe (4) is then encased with the heat reservoir damper composite (51) such that the heat reservoir layer (1) of the heat reservoir damper composite (51) lies between the pipe (4) and the heat damping material (5) of the heat reservoir damping composite (51).