Abstract: A method and device for non-echo ultrasonic Doppler used for corrected inertial navigation includes providing at least one ultrasonic emitter within an environment, each emitter configured for transmitting an ultrasonic tone of a predefined frequency. An initial location of the mobile device is established within the environment. Dead reckoning procedures are initiated using sensors within the mobile device. The device receives at least one ultrasonic tone from an emitter, and converts the at least one ultrasonic tone into a digital waveform. The device determines at least one peak frequency of the digital waveform, and subtracts the at least one peak frequency from each predefined frequency to determine at least one Doppler shift, which is used for correcting the dead reckoning of the mobile device.
Abstract: An apparatus includes (1) a first housing for housing therein a barcode reading arrangement and (2) an enclosed space for housing therein a battery configured to power the barcode reading arrangement located outside the enclosed space. The first housing includes a window made from one or more materials that has a lower flaming critical temperature than that of any material for making the enclosed space for housing the battery.
Abstract: An imaging-based bar code reader that includes an imaging and decoding system. Focusing optics and a sensor array define a field of view. A data processor has a memory for storing a pattern definition of previously imaged OCR characters and comparing a format of said previously stored characters to a present image to determine a character content of the present image.
Abstract: An imaging lens assembly captures return light through a window of a vertical slot scanner from a target located in a range of working distances along an optical axis away from the window, and projects the captured return light onto an array of a solid-state imager. The imaging lens assembly is optically modified for non-uniform magnification within, and for increasing resolution at an outer peripheral region of, a field of view of the array, in an imaging plane generally perpendicular to the optical axis. The magnification is at least partly increased in the imaging plane with increasing radial distance away from the optical axis, to enable reading of the target when tilted relative to the optical axis and located at the outer peripheral region of the field of view.
Abstract: A solid-state imager is mounted in a reader, such as a bi-optical, dual window, point-of-transaction workstation, for capturing light along an optical axis over a field of view from coded indicia. An optical assembly including non-rotationally symmetrical optics is operative for optically modifying and asymmetrically magnifying an image of the indicia and the field of view of the imager along mutually orthogonal directions generally perpendicular to the optical axis, and for increasing resolution of the imager along one of the directions. Preferably, the non-rotationally symmetrical optics includes a cylindrical lens having an aspherical profile along the one direction, and a planar profile along the other of the directions.
Type:
Grant
Filed:
October 21, 2009
Date of Patent:
July 15, 2014
Assignee:
Symbol Technologies, Inc.
Inventors:
Igor Vinogradov, Michael Veksland, Heng Zhang
Abstract: A method of decoding using an imaging scanner having multiple object sensors each associated with an object field of view. The method includes determining a moving direction of the object using at least two of the multiple object sensors. The moving direction of the object points from a first side to a second side of the imaging scanner. The method includes detecting whether a new object is presence with the object sensor located on the first side of the imaging scanner, and upon detecting the presence of the new object within the object field of view of the object sensor located on the first side of the imaging scanner, capturing an image of the new object in memory with the solid-state imager.
Type:
Application
Filed:
March 13, 2013
Publication date:
July 10, 2014
Applicant:
Symbol Technologies, Inc.
Inventors:
Robert J. Pang, Edward D. Barkan, Thomas E. Lackemann
Abstract: Described is a system and method for monitoring a mobile computing Arrangement. The arrangement may include a sensor and a processor. The sensor detects first data of an event including a directional orientation and a motion of the arrangement. The processor compares the first data to second data to determine if at least one predetermined procedure is to be executed. The second data may include a predetermined threshold range of changes in the directional orientation and the motion. If the predetermined procedure is to be executed, the processor selects the predetermined procedure which corresponds to the event as a function of the first data. Subsequently, the predetermined procedures is executed.
Type:
Grant
Filed:
April 29, 2011
Date of Patent:
July 8, 2014
Assignee:
Symbol Technologies, Inc.
Inventors:
Thomas Wulff, David Bellows, Kevin Cordes
Abstract: A workstation with a housing having a upright window and a horizontal window includes a printed circuit board having at least two imaging sensors thereon located in the housing, and a controller operative to read a barcode in a captured image. The workstation also includes a chassis firmly mounted on the printed circuit board, and two inserts each configured to hold steadily one of at least two lens assemblies. At least one of the two inserts includes multiple slots for attaching such insert to the chassis at a position that is laterally adjustable.
Abstract: A method for controlling a workstation includes the following: (1) energizing a first illuminator to illuminate a first subfield of view with a first illumination pulse and subsequently energizing the first illuminator to illuminate the first subfield of view with a second illumination pulse; (2) exposing the array of photosensitive elements in the imaging sensor for a first sensor-exposure time and subsequently exposing the array of photosensitive elements in the imaging sensor for a second sensor-exposure time; and (3) processing an image captured by the imaging sensor to decode a barcode in the image. The first illumination pulse overlaps with the first sensor-exposure time for a first overlapped-pulse-duration, and the second illumination pulse overlaps with the second sensor-exposure time for a second overlapped-pulse-duration. The first overlapped-pulse-duration is different from the second overlapped-pulse-duration.
Type:
Application
Filed:
March 11, 2013
Publication date:
July 3, 2014
Applicant:
Symbol Technologies, Inc.
Inventors:
Caihua (Lucy) Chen, Edward D. Barkan, Chinh Tan
Abstract: A barcode imaging reader includes a housing, a window in the housing, and an imaging sensor having an array of photosensitive elements for capturing light passing through the window. The barcode imaging reader further includes an illumination arrangement for emitting an illumination light from the housing interior to illuminate a barcode target object spaced from the housing. The illumination arrangement includes (i) an illumination source within the housing operative to generate the illumination light during imaging capture, (ii) a first mirror having a shape of a toroidal surface with predominantly concave surface, and (iii) a second mirror having a shape of a toroidal surface with predominantly convex surface.
Abstract: A method includes the following: (1) detecting light from a target object to capture multiple images of the target object while substantially maintaining the distance between the target object and the imaging lens arrangement that is configured to have a focus position thereof changed with a lens-driving-parameter; (2) processing the at least one of the multiple images to determine a feature-size in an aiming pattern; (3) processing at least two of the multiple images to find an optimal lens-driving-parameter that results in the maximum image sharpness; and (4) storing both the feature-size and the optimal lens-driving-parameter into a memory.
Abstract: The present disclosure provides systems and methods for detecting attacks against authentication mechanisms that generate Transport Layer Security (TLS) tunnels using a server public key. Such attacks can include misconfigured wireless local area network (WLAN) clients that fail to authenticate the server public key prior to creating the TLS tunnels and exchanging credentials. In an exemplary embodiment, an intrusion detection system (IDS) or intrusion prevention system (IPS) is aware of the server public key and monitors for authentication handshakes to detect invalid keys.
Abstract: An apparatus includes an illumination lens, an illumination light source for generating illumination light, and a prism made of optical transparent material. The first section on the first surface of the prism has a length that is at least four times as long as its width. The first surface of the prism includes a second section adjacent to the first section for defining the edge of an aperture. The third surface of the prism is configured to reflect the illumination light received from the first section onto the second surface of the prism. At least a portion of the illumination light received from the first section passes through both the second surface of the prism and the illumination lens for projecting illumination light onto a target object within an imaging field of view.
Abstract: A wireless scanning system for obtaining data related to items includes a radio frequency identification (RFID) reader configured to interrogate RFID tags and obtain tag data from interrogated RFID tags, and a mobile wireless device that is incapable of interrogating RFID tags. The system uses a device RFID tag in close proximity to the mobile wireless device, where the device RFID tag is configured to convey data that identifies the mobile wireless device when interrogated by the RFID reader. When the mobile wireless device is within close proximity to an item of interest having a corresponding item RFID tag, the RFID reader interrogates the device RFID tag and the item RFID tag. Thereafter, the RFID reader routes the item tag data in a manner destined for the mobile wireless device. This system enables the mobile wireless device to obtain the item tag data even though the mobile wireless device has no native RFID reader capabilities.
Abstract: A method and system for locationing of a mobile device (100) within an environment includes light sources (116) disposed within the environment and modified to provide a plurality of unique identity patterns (202) associated with particular locations within the environment. A camera (106) and image processor (102) of the mobile device can obtain images of a modified light source (200) and recognize the unique identity patterns in the image and a horizontal and vertical angle of a position of the light source in the image from a center position. An accelerometer (300) can capture the gravity vectors of the camera. A locationing engine (102, 130) can determine a location of the mobile device using the unique optical pattern, gravity vectors, and the horizontal and vertical angles.
Type:
Grant
Filed:
September 21, 2012
Date of Patent:
June 17, 2014
Assignee:
Symbol Technologies, Inc.
Inventors:
Russell E. Calvaresse, Timothy B. Austin, Michael O'Haire
Abstract: A method and system for orientation compensation of a mobile device within an environment includes providing a plurality of reference markers having straight edges and having a defined, regular orientation with respect to the environment. Information about the orientation of the reference markers is supplied to a mobile device operating within the environment. An orientation sensor disposed within the mobile device estimates an orientation of the mobile device. An image of one reference marker is captured, and at least one edge of that reference marker is located. The estimated orientation is compensated by correcting for the reference marker orientation and aligning the corrected estimated orientation to the at least one edge of the reference marker that is closest to being parallel to the corrected estimated orientation.
Abstract: An apparatus includes a battery in the housing, a first light indicator operative to emit light in a first color with the duration of a first time period after a predetermined triggering event, and a second light indicator operative to emit light in a second color with the duration of a second time period after the predetermined triggering event. The ratio between the first time period and the second time period monotonically depends upon a state of charge on the battery.
Abstract: A method includes transmitting from at least one of the imaging sensors to a controller a short frame data that is collected by the at least one of the imaging sensors when the illumination source is activated to provide the illumination light toward the target object with a first illumination level. The method further includes transmitting subsequently from the at least one of the imaging sensors to the controller a regular frame data that is collected by the at least one of the imaging sensors when the illumination source is activated to provide the illumination light toward the target object with a second illumination level that is determined based upon the short frame data. The size of the regular frame data being at least 50 times larger than the size of the short frame data.
Type:
Application
Filed:
November 30, 2012
Publication date:
June 5, 2014
Applicant:
Symbol Technologies, Inc.
Inventors:
Dariusz J. Madej, David P. Goren, Eugene B. Joseph