Abstract: A pneumatic pump comprises two coaxial cylindrical pumping chambers, each enclosing a piston connected to the other through a partition by a tube, thereby forming a monolithic piston assembly that is driven axially by a common electrical actuator providing reciprocating motion. The volume in the bottom chamber is selected as needed to provide the desired pressure in the left ventricle of an artificial heart driven by the pump. The diameter of the tube connecting the pistons is selected such that the stroke volume of the top chamber is reduced with respect to that of the bottom chamber as needed to match the reduced pressure requirements of the right ventricle of the artificial heart. Check valves are used in each chamber to ensure venting of excess pressure during the blood ejection phase and to limit the vacuum during the fill phase.
Abstract: A driver is disclosed for powering a pneumatically operated implantable device, such as an artificial heart with a left and a right ventricle. The driver includes a pair of compressors that each has a first and a second compression chamber. In a first mode of operation, both the first and the second compressor power the left and right ventricle of the artificial heart. In the event of a malfunction in the second compressor, the left and right ventricles of the artificial heart may be powered by the first compressor. Similarly, if a malfunction occurs in the first compressor, the artificial heart may be fully powered by the second compressor.
Type:
Grant
Filed:
April 23, 2008
Date of Patent:
October 12, 2010
Assignee:
SynCardia Systems, Inc.
Inventors:
David Yavorski, Leonard M. Faria, James W. Kelland, Douglas M. Riker
Abstract: A driver is disclosed for powering a pneumatically operated implantable device, such as an artificial heart with a left and a right ventricle. The driver includes a pair of compressors that each has a first and a second compression chamber. In a first mode of operation, both the first and the second compressor power the left and right ventricle of the artificial heart. In the event of a malfunction in the second compressor, the left and right ventricles of the artificial heart may be powered by the first compressor. Similarly, if a malfunction occurs in the first compressor, the artificial heart may be fully powered by the second compressor.
Type:
Application
Filed:
April 23, 2008
Publication date:
October 29, 2009
Applicant:
SynCardia Systems, Inc.
Inventors:
David Yavorski, Leonard M. Faria, James W. Kelland, Douglas M. Riker