Patents Assigned to Synthetics Genomics, Inc.
  • Patent number: 9718060
    Abstract: The present invention provides a system for receiving biological sequence information and activating the synthesis of a biological entity. The system has a receiving unit for receiving a signal encoding biological sequence information transmitted from a transmitting unit. The transmitting unit can be present at a remote location from the receiving unit. The system also has an assembly unit connected to the receiving unit, and the assembly unit assembles the biological entity according to the biological sequence information. Thus, according to the present invention biological sequence information can be digitally transmitted to a remote location and the information converted into a biological entity, for example a protein useful as a vaccine, immediately upon being received by the receiving unit and without further human intervention after preparing the system for receipt of the information.
    Type: Grant
    Filed: August 16, 2013
    Date of Patent: August 1, 2017
    Assignee: Synthetic Genomics, Inc.
    Inventors: J. Craig Venter, Daniel Gibson, John E. Gill
  • Patent number: 9644225
    Abstract: The invention relates to methods for the preparation of synthetic nucleic acids, such as double-stranded nucleic acids. The methods involve the preparation of a multiplicity of different nucleic acid fragments by solid-phase synthesis, and the joining together of at least two of the multiplicity of the nucleic acid fragments by binding to one another or by covalent linkage. In the methods at least some of the nucleic acid fragments have a high AT content and are used in an increased amount relative to other fragments for the joining step.
    Type: Grant
    Filed: January 14, 2013
    Date of Patent: May 9, 2017
    Assignee: Synthetic Genomics, Inc.
    Inventors: Peer Staehler, Raphael Carapito
  • Patent number: 9593329
    Abstract: A method to assemble any desired nucleic acid molecule by combining cassettes in vitro to form assemblies which are further combined in vivo, or by assembling large numbers of DNA fragments by recombination in a yeast culture to obtain desired DNA molecules of substantial size is described.
    Type: Grant
    Filed: October 7, 2008
    Date of Patent: March 14, 2017
    Assignee: Synthetic Genomics, Inc.
    Inventors: Daniel G. Gibson, Lei Young, John I. Glass, Gwynedd A. Benders, J. Craig Venter, Clyde A. Hutchison, III, Hamilton O. Smith
  • Patent number: 9568839
    Abstract: The invention relates to a method for producing polymers, in particular synthetic nucleic acid double strands of optional sequence, comprising the steps: (a) provision of a support having a surface area which contains a plurality of individual reaction areas, (b) location-resolved synthesis of nucleic acid fragments having in each case different base sequences in several of the individual reaction areas, and (c) detachment of the nucleic acid fragments from individual reaction areas.
    Type: Grant
    Filed: March 9, 2009
    Date of Patent: February 14, 2017
    Assignee: Synthetic Genomics, Inc.
    Inventors: Peer F. Stähler, Cord F. Stähler, Manfred Müller
  • Patent number: 9556413
    Abstract: The invention described below relates to an enclosed cell sorting device and methods of using the device. The device is constructed so that the entire process of cell sorting can be conducted under fully anaerobic conditions to retain viability of anaerobic cells before, during, and after cell sorting. This is accomplished by creating an anaerobic atmosphere for the high speed cell sorter and all its components and by the use of airlocks that allow the introduction of anaerobic containers into the chamber containing the sample.
    Type: Grant
    Filed: March 21, 2008
    Date of Patent: January 31, 2017
    Assignee: Synthetic Genomics, Inc.
    Inventors: J. Craig Venter, Eric J. Mathur, Gerardo Vicente Toledo, Hwai Wen Chang, Wayne A. Green
  • Patent number: 9546372
    Abstract: The present application provides novel regulatory elements including promoter sequences from marine microorganisms. The application further discloses DNA constructs containing these novel regulatory elements; transgenic cells, transgenic non-human organisms, and progeny containing these novel regulatory elements. Methods of modifying, producing, and using the regulatory elements are also disclosed. The regulatory elements disclosed herein are particularly suited for use in Nannochloropsis and other microalgae.
    Type: Grant
    Filed: June 11, 2013
    Date of Patent: January 17, 2017
    Assignee: Synthetic Genomics, Inc.
    Inventors: Michele M. Champagne, Toby H. Richardson, Jun Urano
  • Patent number: 9534251
    Abstract: The present invention relates, e.g., to in vitro method, using isolated protein reagents, for joining two double stranded (ds) DNA molecules of interest, wherein the distal region of the first DNA molecule and the proximal region of the second DNA molecule share a region of sequence identity, comprising contacting the two DNA molecules in a reaction mixture with (a) a non-processive 5? exonuclease; (b) a single stranded DNA binding protein (SSB) which accelerates nucleic acid annealing; (c) a non strand-displacing DNA polymerase; and (d) a ligase, under conditions effective to join the two DNA molecules to form an intact double stranded DNA molecule, in which a single copy of the region of sequence identity is retained. The method allows the joining of a number of DNA fragments, in a predetermined order and orientation, without the use of restriction enzymes.
    Type: Grant
    Filed: March 30, 2010
    Date of Patent: January 3, 2017
    Assignee: Synthetic Genomics, Inc.
    Inventors: Lei Young, Hamilton O. Smith, Daniel Glenn Gibson
  • Patent number: 9528061
    Abstract: The present methods deal with the solubilization of coal and lignocellulose biomass using pyrophosphates, polyphosphates, or derivatives thereof.
    Type: Grant
    Filed: September 9, 2011
    Date of Patent: December 27, 2016
    Assignee: Synthetic Genomics Inc.
    Inventors: Brian G. Clement, Toby Richardson, Stuart A. Underwood
  • Patent number: 9528133
    Abstract: The present invention provides methods for producing a product of one or more enzymatic pathways. The pathways used in the methods of the invention involve one or more conversion steps such as, for example, an enzymatic conversion of guluronic acid into D-glucarate (Step 7); an enzymatic conversion of 5-ketogluconate (5-KGA) into L-Iduronic acid (Step 15); an enzymatic conversion of L-Iduronic acid into Idaric acid Step 7b); and an enzymatic conversion of 5-ketocluconate into 4,6-dihydroxy 2,5-diketo hexanoate (2,5-DDH) (Step 16). In some embodiments the methods of the invention produce 2,5-furandicarboxylic acid (FDCA) as a product. The methods include both enzymatic and chemical conversions as steps. Various pathways are also provided for converting glucose into 5-dehdyro-4-deoxy-glucarate (DDG), and for converting glucose into 2,5-furandicarboxylic acid (FDCA). The methods also involve the use of engineered enzymes that perform reactions with high specificity and efficiency.
    Type: Grant
    Filed: March 21, 2014
    Date of Patent: December 27, 2016
    Assignee: Synthetic Genomics, Inc.
    Inventors: Spiros Kambourakis, Benjamin M. Griffin, Kevin V. Martin
  • Patent number: 9506090
    Abstract: The present invention provides methods for producing a product of one or more enzymatic pathways. The pathways used in the methods of the invention involve one or more conversion steps such as, for example, an enzymatic conversion of guluronic acid into D-glucarate (Step 7); an enzymatic conversion of 5-ketogluconate (5-KGA) into L-Iduronic acid (Step 15); an enzymatic conversion of L-Iduronic acid into Idaric acid Step 7b); and an enzymatic conversion of 5-ketocluconate into 4,6-dihydroxy 2,5-diketo hexanoate (2,5-DDH) (Step 16). In some embodiments the methods of the invention produce 2,5-furandicarboxylic acid (FDCA) as a product. The methods include both enzymatic and chemical conversions as steps. Various pathways are also provided for converting glucose into 5-dehdyro-4-deoxy-glucarate (DDG), and for converting glucose into 2,5-furandicarboxylic acid (FDCA). The methods also involve the use of engineered enzymes that perform reactions with high specificity and efficiency.
    Type: Grant
    Filed: September 20, 2013
    Date of Patent: November 29, 2016
    Assignee: Synthetic Genomics, Inc.
    Inventors: Spiros Kambourakis, Benjamin M. Griffin, Kevin V. Martin
  • Patent number: 9481880
    Abstract: The presently disclosed invention relates to methods of installing a genome isolated from one species (the donor) into suitably prepared cells of a second species (the recipient). Introduction of the donor genetic material into the recipient host cell effectively converts the recipient host cell into a new cell that, as a result of the operation of the donated genetic material, is functionally classified as belonging to the genus and species of the donor genetic material.
    Type: Grant
    Filed: May 1, 2008
    Date of Patent: November 1, 2016
    Assignee: Synthetic Genomics, Inc.
    Inventors: John I. Glass, Nina Alperovich, Clyde A. Hutchison, III, Carole Lartigue, Charles E. Merryman, Sanjay Vashee, J. Craig Venter
  • Patent number: 9447422
    Abstract: The present invention provides autonomous replication sequences (ARSs) isolated from Nannochloropsis that support the replication of episomal DNA molecules (EDMs) in eukaryotic cells. The ARSs and EDMs provided herein can be used for expressing genes in organisms including algae and heterokonts.
    Type: Grant
    Filed: December 6, 2013
    Date of Patent: September 20, 2016
    Assignee: Synthetic Genomics, Inc.
    Inventors: Peter DeHoff, Leah Soriaga, Srividya Akella
  • Patent number: 9446407
    Abstract: The invention provides a lid mechanism suitable for use with automated instrumentation. The lid mechanism has a compact design enabling it to function in very small spaces, and therefore on very compact instrumentation. One embodiment of the lid mechanism has a nut positioned around a jackscrew; a motor translationally attached to the nut for driving rotational motion of the nut around the jackscrew and vertical motion of the jackscrew; a main shaft positioned around the jackscrew with a bearing support positioned on the main shaft; a moving support comprising a bearing guide track and positioned on the main shaft so that the bearing support is positioned within the bearing guide track; and a lid plate positioned on the moving support so that vertical movement of the moving support causes vertical movement of the lid plate and rotational movement of the moving support causes rotational movement of the lid plate. Also provided is an automated laboratory instrument having a lid mechanism of the invention.
    Type: Grant
    Filed: July 15, 2015
    Date of Patent: September 20, 2016
    Assignee: Synthetic Genomics, Inc.
    Inventors: Laurence Warden, Scott Wayne Beaver, Mark Henry Becker
  • Patent number: 9441238
    Abstract: Methods and materials useful for modulating the sensitivity of cells to an inhibitor of acetohydroxyacid synthase (AHAS) are disclosed. For example, nucleic acid molecules encoding AHAS large subunits are disclosed as well as methods for using such nucleic acid molecules to transform microbial cells and plant cells, and to confer modulated sensitivity to AHAS-inhibiting compounds onto such cells. Further provided are materials and methods useful for modulating growth, development, activity, and characteristics of host cells and organisms.
    Type: Grant
    Filed: April 26, 2013
    Date of Patent: September 13, 2016
    Assignee: Synthetic Genomics, Inc.
    Inventors: Michele M. Champagne, Jun Urano
  • Patent number: 9441020
    Abstract: The disclosure generally relates to methods and materials for modulating cell productivity. In particular, the present disclosure provides polynucleotides and polypeptides that when overexpressed in microorganisms result in increased in productivity, such as increased biomass productivity. Also disclosed are methods of using the polynucleotides and polypeptides to modulate or increase productivity of host cells such as, for example, algal or heterokont cells. Genetically engineered host cells, such as algal and heterokont cells having increased biomass productivity and bioproducts derived from such host cells are also disclosed.
    Type: Grant
    Filed: December 30, 2014
    Date of Patent: September 13, 2016
    Assignee: Synthetic Genomics, Inc.
    Inventors: Imad Ajjawi, Moena Aqui, Carlos Chavez-Torres
  • Patent number: 9434974
    Abstract: A method is provided for introducing a genome into a cell or cell-like system. The introduced genome may occur in nature, be manmade with or without automation, or may be a hybrid of naturally occurring and manmade materials. The genome is obtained outside of a cell with minimal damage. Materials such as a proteins, RNAs, polycations, nucleoid condensation proteins, or gene translation systems may accompany the genome. The genome is installed into a naturally occurring cell or into a manmade cell-like system. A cell-like system or synthetic cell resulting from the practice of the provided method may be designed and used to yield gene-expression products, such as desired proteins. By enabling the synthesis of cells or cell-like systems comprising a wide variety of genomes, accompanying materials and membrane types, the provided method makes possible a broader field of experimentation and bioengineering than has been available using prior art methods.
    Type: Grant
    Filed: December 22, 2006
    Date of Patent: September 6, 2016
    Assignee: Synthetic Genomics, Inc.
    Inventors: John I. Glass, Lei Young, Carole Lartigue, Nacyra Assad-Garcia, Hamilton O. Smith, Clyde A. Hutchison, J. Craig Venter
  • Patent number: 9273310
    Abstract: Compositions and methods are disclosed herein for cloning a donor genome in a heterologous host cell. In one embodiment, the donor genome can be further modified within a host cell. Modified or unmodified genomes can be further isolated from the host cell and transferred to a recipient cell. Methods disclosed herein can be used to alter donor genomes from intractable donor cells in more tractable host cells.
    Type: Grant
    Filed: March 5, 2010
    Date of Patent: March 1, 2016
    Assignee: Synthetic Genomics, Inc.
    Inventors: Gwynedd A. Benders, John I. Glass, Clyde A. Hutchison, III, Carole Lartigue, Sanjay Vashee, Mikkel A. Algire, Hamilton O. Smith, Charles E. Merryman, Vladimir N. Noskov, Ray-Yuan Chuang, Daniel G. Gibson, J. Craig Venter
  • Patent number: 9267132
    Abstract: Compositions and methods are disclosed herein for cloning a synthetic or a semi-synthetic donor genome in a heterologous host cell. In one embodiment, the donor genome can be further modified within a host cell. Modified or unmodified genomes can be further isolated from the host cell and transferred to a recipient cell. Methods disclosed herein can be used to alter donor genomes from intractable donor cells in more tractable host cells.
    Type: Grant
    Filed: May 19, 2010
    Date of Patent: February 23, 2016
    Assignee: Synthetic Genomics, Inc.
    Inventors: Gwynedd A. Benders, John I. Glass, Clyde A. Hutchison, Carole Lartigue, Sanjay Vashee, Mikkel A. Algire, Hamilton O. Smith, Charles E. Merryman, Vladimir N. Noskov, Ray-Yuan Chuang, Daniel G. Gibson, J. Craig Venter
  • Patent number: 9206435
    Abstract: The presently disclosed invention relates to methods of transferring large nucleic acid molecules or a genome from one cell (the donor) into heterologous host cells in the presence of a crowding agent. The method allows for greater ease and efficiency of transfer of genetic material. Introduction of the donor genetic material into the recipient host cells also allows for manipulation of the donor nucleic acid molecule or genome within the host cells. Methods disclosed herein can be used to alter donor genomes from intractable donor cells in more tractable host cells.
    Type: Grant
    Filed: August 30, 2013
    Date of Patent: December 8, 2015
    Assignee: Synthetic Genomics, Inc.
    Inventors: Bogumil J. Karas, Hutchison Clyde A., III, Hamilton O. Smith, Yo Suzuki
  • Patent number: 9181558
    Abstract: The present invention provides genes, polypeptides and expression constructs therefor, recombinant photosynthetic microorganisms, and method of use thereof, such as for the production of branched-chain alcohols (including 2-methyl-1-butanol, 3-methyl-1-butanol, and isobutanol) and derivatives thereof for a variety of uses.
    Type: Grant
    Filed: May 21, 2013
    Date of Patent: November 10, 2015
    Assignee: Synthetic Genomics, Inc.
    Inventors: Paul Gordon Roessler, Bo Liu, Jessica Roxane Kristof