Patents Assigned to Taiheiyo Cement Corporation
  • Patent number: 11112111
    Abstract: A cement kiln burner device includes a powdered-solid-fuel flow channel having means for swirling a powdered-solid-fuel flow; a first air flow channel placed outside the powdered-solid-fuel flow channel having means for swirling an air flow; a second air flow channel placed outside the first air flow channel having means for straightly forwarding an air flow; a third air flow channel placed inside the powdered-solid-fuel flow channel having means for swirling an air flow; and a combustible-solid-waste flow channel placed inside the third air flow channel. The second air flow channel includes an opening portion forming a port for injecting an air flow, and a closed portion covered for preventing an air flow from passing therethrough. The opening portion and the closed portion are alternately arranged in a circumferential direction.
    Type: Grant
    Filed: September 26, 2018
    Date of Patent: September 7, 2021
    Assignee: Taiheiyo Cement Corporation
    Inventors: Yuya Sano, Kana Horiba, Kouichi Naitou
  • Patent number: 11029025
    Abstract: There is provided a combustible waste injection device and a method for operating the same which can suppress a landing combustion of a combustible waste and suppress excessive change of a flame state from a cement kiln burner even if a rate of using the combustible waste fluctuates. A combustible waste injection device according to the present invention has a combustible waste flow channel which is arranged in an inner side of the air flow channel in an innermost shell, is installed in parallel to an axial direction of the cement kiln burner device and is provided for flow feeding a combustible waste flow, and the combustible waste flow channel has an inclined surface having a rising slope toward the injection port near the injection port in such a manner that a flow channel width in a vertical direction is narrowed toward the injection port.
    Type: Grant
    Filed: August 14, 2019
    Date of Patent: June 8, 2021
    Assignee: Taiheiyo Cement Corporation
    Inventors: Yuya Sano, Kouichi Naitou, Hidenori Tsukidate, Hideyuki Sugaya
  • Patent number: 11014092
    Abstract: An apparatus and method to efficiently recover noble metals such as gold, silver and copper and aluminum from incineration ash, and effectively use ash after recovering the noble metals and others. An incineration ash treatment apparatus 1 including: a crusher for crushing an incineration ash A1 to be less or equal to 5 mm in maximum particle diameter, or/and a classifier for classifying an incineration ash to obtain an incineration ash whose maximum particle diameter is less or equal to 5 mm; an eddy current separator 8 for separating an incineration ash whose maximum particle diameter is less or equal to 5 mm discharged from the crusher or/and the classifier into a conductor E and a nonconductor I; a specific gravity separator for separating a conductor discharged from the eddy current separator 8 into a high gravity material H2 and a low gravity material L2. The specific gravity separator can be an air table 10.
    Type: Grant
    Filed: August 24, 2017
    Date of Patent: May 25, 2021
    Assignee: TAIHEIYO CEMENT CORPORATION
    Inventors: Kou Takizawa, Tomonori Takemoto, Takashi Hanada, Yasuyuki Ishida
  • Patent number: 10964950
    Abstract: The present invention provides a positive electrode active substance for a secondary cell, the positive electrode active substance capable of suppressing adsorption of water effectively in order to obtain a high-performance lithium ion secondary cell or sodium ion secondary cell. The present invention also provides a method for producing the positive electrode active substance for a secondary cell. That is, the present invention is a positive electrode active substance for a secondary cell, in which one or two selected from the group consisting of a water-insoluble electrically conductive carbon material and carbon obtained by carbonizing a water-soluble carbon material, and 0.1 to 5 mass % of a metal fluoride are supported on a compound containing at least iron or manganese, the compound represented by formula (A) LiFeaMnbM1cPO4, formula (B) Li2FedMneM2fSiO4, or formula (C) NaFegMnhQiPO4.
    Type: Grant
    Filed: September 17, 2015
    Date of Patent: March 30, 2021
    Assignee: TAIHEIYO CEMENT CORPORATION
    Inventors: Hiroki Yamashita, Tomoki Hatsumori, Atsushi Nakamura, Takaaki Ogami
  • Patent number: 10868295
    Abstract: There is provided a positive electrode active material composite for a lithium-ion secondary battery, in which, when using as a positive electrode active material of the lithium-ion secondary battery, it can effectively improve high-temperature cycle characteristics. In the positive electrode active material composite for a lithium-ion secondary battery, only on the surface of a lithium transition metal oxide secondary particle (A) composed of one or more of the lithium transition metal oxide particles represented by the following formula (I): LiNiaCobMncM1xO2 . . . (I) or the following formula (II): LiNidCOeAlfM2yO2 . . . (II), a lithium-based polyanion particles (B) is composited with lithium transition metal oxide particles under a specific condition, the lithium-based polyanion particles (B) being represented by the following formula (III) or (III)?: LigMnhFeiM3zPO4 . . . (III) or Mnh?Fei?M3z?PO4 . . . (III)? and being supporting carbon (C) on a surface thereof.
    Type: Grant
    Filed: May 18, 2018
    Date of Patent: December 15, 2020
    Assignees: TAIHEIYO CEMENT CORPORATION, DENSO CORPORATION
    Inventors: Hiroki Yamashita, Yuko Hirayama, Toshihito Shimada, Takaaki Ogami, Shuhei Yoshida, Satoru Suzuki
  • Patent number: 10852195
    Abstract: A first radiance meter is directed toward an object to be measured, radiance is measured through a space where dust is present with the use of at least two wavelengths by the first radiance meter, second radiance meters which are equal in number to one or more objects having temperatures different from that of the object to be measured are directed toward the objects, radiances are measured through the space with the use of at least two wavelengths by the second radiance meters respectively, and a temperature of the object to be measured, a temperature of the dust, and concentration of the dust are measured from the radiances measured by the first radiance meter and the second radiance meters.
    Type: Grant
    Filed: August 30, 2016
    Date of Patent: December 1, 2020
    Assignees: MITSUBISHI MATERIALS CORPORATION, UBE INDUSTRIES, LTD., SUMITOMO OSAKA CEMENT CO., LTD., TAIHEIYO CEMENT CORPORATION
    Inventors: Hirokazu Shima, Yoshiaki Takata
  • Publication number: 20200161632
    Abstract: There is provided a positive electrode active material composite for a lithium-ion secondary battery, in which, when using as a positive electrode active material of the lithium-ion secondary battery, it can effectively improve high-temperature cycle characteristics. In the positive electrode active material composite for a lithium-ion secondary battery, only on the surface of a lithium transition metal oxide secondary particle (A) composed of one or more of the lithium transition metal oxide particles represented by the following formula (I): LiNiaCobMncM1xO2 . . . (I) or the following formula (II): LiNidCOeAlfM2yO2 . . . (II), a lithium-based polyanion particles (B) is composited with lithium transition metal oxide particles under a specific condition, the lithium-based polyanion particles (B) being represented by the following formula (III) or (III)?: LigMnhFeiM3zPO4 . . . (III) or Mnh?Fei?M3z?PO4 . . . (III)? and being supporting carbon (C) on a surface thereof.
    Type: Application
    Filed: May 18, 2018
    Publication date: May 21, 2020
    Applicants: TAIHEIYO CEMENT CORPORATION, DENSO CORPORATION
    Inventors: Hiroki YAMASHITA, Yuko HIRAYAMA, Toshihito SHIMADA, Takaaki OGAMI, Shuhei YOSHIDA, Satoru SUZUKI
  • Publication number: 20200141809
    Abstract: A first radiance meter is directed toward an object to be measured, radiance is measured through a space where dust is present with the use of at least two wavelengths by the first radiance meter, second radiance meters which are equal in number to one or more objects having temperatures different from that of the object to be measured are directed toward the objects, radiances are measured through the space with the use of at least two wavelengths by the second radiance meters respectively, and a temperature of the object to be measured, a temperature of the dust, and concentration of the dust are measured from the radiances measured by the first radiance meter and the second radiance meters.
    Type: Application
    Filed: August 30, 2016
    Publication date: May 7, 2020
    Applicants: MITSUBISHI MATERIALS CORPORATION, UBE INDUSTRIES, LTD., SUMITOMO OSAKA CEMENT CO., LTD., TAIHEIYO CEMENT CORPORATION
    Inventors: Hirokazu SHIMA, Yoshiaki TAKATA
  • Patent number: 10601042
    Abstract: The present invention provides a positive electrode active substance for a secondary cell, the positive electrode active substance capable of suppressing adsorption of water effectively in order to obtain a high-performance lithium ion secondary cell or sodium ion secondary cell. The present invention also provides a method for producing the positive electrode active substance for a secondary cell. That is, the present invention is a positive electrode active substance for a secondary cell, in which a water-insoluble electrically conductive carbon material and carbon obtained by carbonizing a water-soluble carbon material are supported on a compound containing at least iron or manganese, the compound represented by formula (A) LiFeaMnbMnbM1cPO4, formula (B) Li2FedMneM2fSiO4, or formula (C) NaFegMnhQiPO4.
    Type: Grant
    Filed: September 17, 2015
    Date of Patent: March 24, 2020
    Assignee: TAIHEIYO CEMENT CORPORATION
    Inventors: Hiroki Yamashita, Tomoki Hatsumori, Atsushi Nakamura, Takaaki Ogami
  • Patent number: 10577282
    Abstract: Provided is a cement composition that has high fluidity (for example, a 0-drop flow value of 200 mm or more) before curing and exhibits high compressive strength (for example, 320 N/mm2 or more) after curing. The cement composition includes a cement, a silica fume having a BET specific surface area of from 10 m2/g to 25 m2/g, an inorganic powder having a 50% cumulative particle size of from 0.8 ?m to 5 ?m, a fine aggregate having a maximum particle size of 1.2 mm or less, a water reducing agent, an antifoaming agent, and water. The ratio of the cement is from 55 vol % to 65 vol %, the ratio of the silica fume is from 5 vol % to 25 vol %, and the ratio of the inorganic powder is from 15 vol % to 35 vol % in the total amount of 100 vol % of the cement, the silica fume, and the inorganic powder.
    Type: Grant
    Filed: May 28, 2019
    Date of Patent: March 3, 2020
    Assignee: TAIHEIYO CEMENT CORPORATION
    Inventors: Risa Nakayama, Katsuya Kono, Katsuhiko Tada, Hiroaki Mori, Shingo Sugiyama, Shinpei Maehori
  • Publication number: 20190348680
    Abstract: The present invention provides a positive-electrode active material for a lithium-ion secondary cell or a sodium-ion secondary cell, which can effectively exhibit more excellent charge/discharge characteristics; and a method for manufacturing the positive-electrode active material. Namely, the present invention relates to a positive-electrode active material for a secondary cell comprising an oxide represented by formula (A): LiFeaMnbMcPO4, formula (B): LiFeaMnbMcSiO4, or formula (C): NaFegMnhQiPO4; and carbon derived from a cellulose nanofiber supported thereon.
    Type: Application
    Filed: July 18, 2019
    Publication date: November 14, 2019
    Applicant: TAIHEIYO CEMENT CORPORATION
    Inventors: Hiroki YAMASHITA, Tomoki HATSUMORI, Takaaki OGAMI
  • Patent number: 10461330
    Abstract: The present invention provides a positive-electrode active material for a lithium-ion secondary cell, which can effectively exhibit more excellent charge/discharge characteristics; and a method for manufacturing the positive-electrode active material. Namely, the present invention relates to a positive-electrode active material for a secondary cell comprising an oxide represented by formula (A): LifeaMnbMcPO4; and carbon derived from a cellulose nanofiber supported thereon.
    Type: Grant
    Filed: September 15, 2015
    Date of Patent: October 29, 2019
    Assignee: TAIHEIYO CEMENT CORPORATION
    Inventors: Hiroki Yamashita, Tomoki Hatsumori, Takaaki Ogami
  • Patent number: 10351476
    Abstract: Provided is a cement composition that has high fluidity (for example, a 0-drop flow value of 200 mm or more) before curing and exhibits high compressive strength (for example, 320 N/mm2 or more) after curing. The cement composition includes a cement, a silica fume having a BET specific surface area of from 10 m2/g to 25 m2/g, an inorganic powder having a 50% cumulative particle size of from 0.8 ?m to 5 ?m, a fine aggregate having a maximum particle size of 1.2 mm or less, a water reducing agent, an antifoaming agent, and water. The ratio of the cement is from 55 vol % to 65 vol %, the ratio of the silica fume is from 5 vol % to 25 vol %, and the ratio of the inorganic powder is from 15 vol % to 35 vol % in the total amount of 100 vol % of the cement, the silica fume, and the inorganic powder.
    Type: Grant
    Filed: August 25, 2015
    Date of Patent: July 16, 2019
    Assignee: TAIHEIYO CEMENT CORPORATION
    Inventors: Risa Nakayama, Katsuya Kono, Katsuhiko Tada, Hiroaki Mori, Shingo Sugiyama, Shinpei Maehori
  • Patent number: 10066873
    Abstract: [Problems] A combustion gas extraction probe that is capable of preventing burnout of a head metal portion of a probe, capable of rapidly cooling a high-temperature gas in a uniform manner in a probe, and whose outer diameter can be kept small. [Means for Solving Problems] A combustion gas extraction probe (4) having a hollow-cylindrical inner tube (4a) in which a high-temperature combustion gas flows, a hollow-cylindrical outer tube (4b) surrounding the inner tube (4a), a low-temperature gas discharge hole (4c) provided in the inner tube (4a), and a low-temperature gas supply means (9) for supplying a low-temperature gas between the inner tube (4a) and the outer tube (4b) and discharging the low-temperature gas from the discharge hole (4c) into the direction that is substantially perpendicular to the sucking direction of the high-temperature combustion gas and is toward the center of the flow of said high-temperature combustion gas.
    Type: Grant
    Filed: November 16, 2004
    Date of Patent: September 4, 2018
    Assignee: Taiheiyo Cement Corporation
    Inventors: Shinichiro Saito, Takahiko Suzuki
  • Publication number: 20180083280
    Abstract: The present invention provides a positive electrode active substance for a secondary cell, the positive electrode active substance capable of suppressing adsorption of water effectively in order to obtain a high-performance lithium ion secondary cell or sodium ion secondary cell. The present invention also provides a method for producing the positive electrode active substance for a secondary cell. That is, the present invention is a positive electrode active substance for a secondary cell, in which a water-insoluble electrically conductive carbon material and carbon obtained by carbonizing a water-soluble carbon material are supported on an oxide containing at least iron or manganese, the oxide represented by formula (A) LiFeaMnbMcPO4, formula (B) Li2FedMneNfSiO4, or formula (C) NaFegMnhQiPO4.
    Type: Application
    Filed: September 17, 2015
    Publication date: March 22, 2018
    Applicant: TAIHEIYO CEMENT CORPORATION
    Inventors: Hiroki YAMASHITA, Tomoki HATSUMORI, Atsushi NAKAMURA, Takaaki OGAMI
  • Publication number: 20180083285
    Abstract: The present invention provides a positive electrode active substance for a secondary cell, the positive electrode active substance capable of suppressing adsorption of water effectively in order to obtain a high-performance lithium ion secondary cell or sodium ion secondary cell. The present invention also provides a method for producing the positive electrode active substance for a secondary cell. That is, the present invention is a positive electrode active substance for a secondary cell, in which one or two selected from the group consisting of a water-insoluble electrically conductive carbon material and carbon obtained by carbonizing a water-soluble carbon material, and 0.1 to 5 mass % of a metal fluoride are supported on a compound containing at least iron or manganese, the compound represented by formula (A) LiFenMnbM1cPO4, formula (B) Li2FedMneM2fSiO4, or formula (C) NaFegMnhQiPO4.
    Type: Application
    Filed: September 17, 2015
    Publication date: March 22, 2018
    Applicant: TAIHEIYO CEMENT CORPORATION
    Inventors: Hiroki YAMASHITA, Tomoki HATSUMORI, Atsushi NAKAMURA, Takaaki OGAMI
  • Publication number: 20180053929
    Abstract: A positive electrode active substance for a secondary cell, where the positive electrode active substance is capable of suppressing adsorption of water effectively in order to obtain a high-performance lithium ion secondary cell or sodium ion secondary cell. The positive electrode active substance contains 0.3 to 5 mass % of graphite, 0.1 to 4 mass % of carbon obtained by carbonizing a water-soluble carbon material, or 0.1 to 5 mass % of a metal fluoride is supported on a composite containing a compound which contains at least iron or manganese, where the compound is represented by formula (A) LiFeaMnbMcPO4, formula (B) Li2FedMneNfSiO4, or formula (C) NaFegMnhQiPO4, and carbon obtained by carbonizing a cellulose nanofiber.
    Type: Application
    Filed: September 17, 2015
    Publication date: February 22, 2018
    Applicant: TAIHEIYO CEMENT CORPORATION
    Inventors: Hiroki YAMASHITA, Tomoki HATSUMORI, Atsushi NAKAMURA, Takaaki OGAMI
  • Patent number: 9863812
    Abstract: A first radiance meter that is provided so as to face an object in an atmosphere in which there is dust and measures the radiance of the object and a second radiance meter that is provided so as not to oppose the object and measures the radiance of the dust between the object and the first radiance meter are used to measure the temperature of the object on the basis of the object radiance that has been measured by the first radiance meter and the radiance of the dust between the object and the first radiance meter that has been measured by the second radiance meter.
    Type: Grant
    Filed: February 25, 2015
    Date of Patent: January 9, 2018
    Assignees: MITSUBISHI MATERIALS CORPORATION, UBE INDUSTRIES, LTD., SUMITOMO OSAKA CEMENT CO., LTD., TAIHEIYO CEMENT CORPORATION
    Inventors: Hirokazu Shima, Yoshiaki Takata
  • Patent number: 9835493
    Abstract: A first radiance meter that is provided so as to face an object in an atmosphere in which there is dust and measures the radiance of the object and a second radiance meter that is provided so as not to oppose the object and measures the radiance of the dust between the object and the first radiance meter are used to measure the temperature of the object on the basis of the object radiance that has been measured by the first radiance meter and the radiance of the dust between the object and the first radiance meter that has been measured by the second radiance meter.
    Type: Grant
    Filed: February 25, 2015
    Date of Patent: December 5, 2017
    Assignees: MITSUBISHI MATERIALS CORPORATION, UBE INDUSTRIES, LTD., SUMITOMO OSAKA CEMENT CO., LTD., TAIHEIYO CEMENT CORPORATION
    Inventors: Hirokazu Shima, Yoshiaki Takata
  • Patent number: 9816200
    Abstract: A silicon carbide powder which, when used as a raw material in a sublimation recrystallization method, enables improvement in productivity of a silicon carbide single crystal by exhibiting a high sublimation rate and allowing a small amount of silicon carbide to remain without being sublimated, and enables an increase in size of the silicon carbide single crystal (for example, a single crystal wafer). The silicon carbide powder has a Blaine specific surface area of from 250 cm2/g to 1,000 cm2/g and a ratio of a silicon carbide powder having a particle size of more than 0.70 mm and 3.00 mm or less of 50 vol % or more with respect to a total amount of the silicon carbide powder. When a silicon carbide powder accommodated in a crucible is heated to be sublimated, a silicon carbide single crystal is formed on a seed crystal provided on an undersurface of a lid.
    Type: Grant
    Filed: November 27, 2013
    Date of Patent: November 14, 2017
    Assignees: TAIHEIYO CEMENT CORPORATION, NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY
    Inventors: Kenta Masuda, Kouki Ichitsubo, Masakazu Suzuki, Kiyoshi Nonaka, Tomohisa Kato, Hideaki Tanaka