Patents Assigned to TAIPEI MEDICAL UNIVERSITY (TMU)
  • Publication number: 20230134678
    Abstract: An operating method of a ketogenic dietary evaluation system includes steps as follows. The electroencephalogram data of a responder group and the electroencephalogram data of a non-responder group are preloaded, in which each electroencephalogram datum includes electroencephalograms of channels. The electroencephalograms of the channels are preprocessed to obtain the preprocessed electroencephalograms of the channels. A connectivity matrix is obtained on a basis of the phase synchronization between each two of the preprocessed electroencephalograms of the channels. The connectivity matrix is sampled and analyzed through different frequency bands and different proportion threshold values to obtain graphical parameters. A predictive model is established on a basis of a reduction rate of a predetermined event of the responder group, a reduction rate of the predetermined event of the non-responder group and the parameters.
    Type: Application
    Filed: November 2, 2022
    Publication date: May 4, 2023
    Applicants: Kaohsiung Chang Gung Memorial Hospital, Taipei Medical University (TMU)
    Inventors: Pi-Lien Hung, Syu-Jyun Peng
  • Patent number: 11593935
    Abstract: The present disclosure provides an operating method of a dopamine transporter check system, and the operation method includes steps as follows. A scan image of a subject's brain is obtained from a scan machine, and the scan image is a three-dimensional image. The scan image is aligned to a standard brain space to obtain a standardized scan image. Intensity normalization is performed on the standardized scan image. The standardized scan image after the intensity normalization is converted into a two-dimensional image. A plurality of image data are got from at least one region of interest in the two-dimensional image, and the at least one region of interest includes a left caudate, a left putamen, a right caudate and a right putamen. A dopamine neuron loss degree measurement and evaluation model based on the image data is established through a transfer learning.
    Type: Grant
    Filed: December 9, 2020
    Date of Patent: February 28, 2023
    Assignee: TAIPEI MEDICAL UNIVERSITY (TMU)
    Inventors: Syu-Jyun Peng, Hsin-Yung Chen, Ya-Ju Tsai
  • Publication number: 20220122246
    Abstract: The present disclosure provides an operating method of a dopamine transporter check system, and the operation method includes steps as follows. A scan image of a subject's brain is obtained from a scan machine, and the scan image is a three-dimensional image. The scan image is aligned to a standard brain space to obtain a standardized scan image. Intensity normalization is performed on the standardized scan image. The standardized scan image after the intensity normalization is converted into a two-dimensional image. A plurality of image data are got from at least one region of interest in the two-dimensional image, and the at least one region of interest includes a left caudate, a left putamen, a right caudate and a right putamen. A dopamine neuron loss degree measurement and evaluation model based on the image data is established through a transfer learning.
    Type: Application
    Filed: December 9, 2020
    Publication date: April 21, 2022
    Applicant: Taipei Medical University (TMU)
    Inventors: Syu-Jyun Peng, Hsin-Yung Chen, Ya-Ju Tsai
  • Patent number: 11282197
    Abstract: The present disclosure provides an operating method of a system for analyzing brain tissue based on computerized tomographic imaging, and the operation method includes steps as follows. A computed tomography image of a subject is aligned to a predetermined standard brain space image, to obtain a first normalized test computed tomography image. A voxel contrast of the first normalized test computed tomography image is enhanced to obtain an enhanced first normalized test computed tomography image. The enhanced first normalized test computed tomography image is aligned to an average computed tomographic image of a control group to obtain a second normalized test computed tomography image. An analysis based on the second normalized test computed tomography image and a plurality of computerized tomographic images of the control group is performed to obtain a t-score map.
    Type: Grant
    Filed: July 14, 2020
    Date of Patent: March 22, 2022
    Assignees: National Central University, Taipei Medical University (TMU)
    Inventors: Syu-Jyun Peng, Yu-Wei Chen, Jing-Yu Yang, Jang-Zern Tsai, Kuo-Wei Wang, Yeh-Lin Kuo
  • Patent number: 11238591
    Abstract: A medical image processing system includes a memory and a processor coupled to each other. The processor accesses and executes instructions which memory stores to perform the following: obtaining a plurality of brain MR images corresponding to a subject, wherein the brain MR images corresponds to a subject brain space; accessing a DBS targets atlas corresponding to a specific stimulation area; transforming the DBS targets atlas from a MNI brain space to the subject brain space based on a DARTEL algorithm; marking at least one coordinate having a largest Voxel value in the brain MR images based on the transformed DBS targets atlas; and storing the brain MR images being targeted with the at least one coordinate into a predetermined format corresponding to a guiding device so that the guiding device displays the brain MR images being targeted with the at least one coordinate for guidance in DBS procedure.
    Type: Grant
    Filed: July 15, 2020
    Date of Patent: February 1, 2022
    Assignees: Taipei Medical University (TMU), Kaohsiung Chang Gung Memorial Hospital
    Inventors: Syu-Jyun Peng, Fu-Yuan Shih
  • Patent number: 11181597
    Abstract: The present disclosure provides an operating method of an automatic analysis system on magnetic resonance imaging (MRI), which includes steps as follows. Images are received from of the subject's brain from the MRI machine. Contrast-enhanced T1-weighted images and T2-weighted images are obtained from the images, and the pre-processing is performed on the images. The ratio of T2-weighted images to contrast-enhanced T1-weighted images is calculated to generate contrast-enhanced images. The unsupervised clustering is performed on the region of interest in the contrast-enhanced image to separate a cystic part and a non-cystic part so as to calculate the feature parameters. After radiosurgery is performed on the brain tumor corresponding to the region of interest, the volume change of the tumor is analyzed. The linear regression analysis of the feature parameters and the volume change of the tumor is performed for prognostic evaluation.
    Type: Grant
    Filed: November 9, 2020
    Date of Patent: November 23, 2021
    Assignees: Taipei Medical University (TMU), TAIPEI VETERANS GENERAL HOSPITAL
    Inventors: Syu-Jyun Peng, Chih-Ying Huang, Cheng-Chia Lee, Huai-Che Yang, Hsiu-Mei Wu
  • Patent number: 11042983
    Abstract: The present disclosure provides an operating method of an automatic brain infarction detection system on magnetic resonance imaging (MRI), which includes steps as follows. Images corresponding to different slices of a brain of a subject are received from the MRI machine. The image mask process is performed on first and second images of the images. It is determined whether the cerebellum image intensity and the brain image intensity in the first image are matched. When the cerebellum image intensity and the brain image intensity are not matched, the cerebellar image intensity in the first image is adjusted. The first image is processed through a nonlinear regression to obtain a third image. A neural network identify an infarct region by using the first, second and third images that are cut.
    Type: Grant
    Filed: May 27, 2020
    Date of Patent: June 22, 2021
    Assignees: National Central University, Taipei Medical University (TMU)
    Inventors: Jang-Zern Tsai, Syu-Jyun Peng, Yu-Wei Chen, Meng-Zong Tsai, Kuo-Wei Wang, Yeh-Lin Kuo
  • Publication number: 20140348941
    Abstract: A method for manufacturing bioactive glass includes the steps below. A precursor and a polar solvent are mixed to form a mixed solution, in which the precursor includes a silicon precursor, a calcium precursor and a phosphorus precursor. The mixed solution is atomized to form a mixture droplet. The mixture droplet is oxidized in an environment of 500° C. to 900° C. to form the bioactive glass.
    Type: Application
    Filed: November 7, 2013
    Publication date: November 27, 2014
    Applicants: Taipei Medical University (TMU), National Taiwan University of Science and Technology
    Inventors: Shao-Ju SHIH, Yu-Jen CHOU, Chung-Kwei LIN
  • Patent number: 8486898
    Abstract: Compounds extracted from Rhodiola rosea have ability to inhibit gelatinases and collagenases activity. The compounds have the chemical structure as shown below.
    Type: Grant
    Filed: June 23, 2011
    Date of Patent: July 16, 2013
    Assignees: Taipei Medical University (TMU), China Medical University
    Inventors: Ching-Kuo Lee, Chieh-Chih Hsu, George Hsiao, Shin-Hun Juang
  • Publication number: 20120022008
    Abstract: Compounds extracted from Rhodiola rosea have ability to inhibit gelatinases and collagenases activity. The compounds have the chemical structure as shown below.
    Type: Application
    Filed: June 23, 2011
    Publication date: January 26, 2012
    Applicants: CHINA MEDICAL UNIVERSITY, TAIPEI MEDICAL UNIVERSITY (TMU)
    Inventors: Ching-Kuo Lee, Chieh-Chih Hsu, George Hsiao, Shin-Hun Juang