Patents Assigned to TAIWAN POWDER TECHNOLOGIES CO., LTD.
-
Patent number: 10982305Abstract: The present teaching is generally directed to soft magnetic alloys. In particular, the present teaching is directed to soft magnetic alloys including Samarium (“Sm”). In a non-limiting embodiment, an Sm-containing magnetic alloy is described including 15 wt % to 55 wt % of Cobalt (“Co”), less than 2.5 wt % of Sm, and 35 wt % to 75 wt % of Iron (“Fe”). The Sm-containing magnetic alloy may further include at least one element X, selected from a group including Vanadium (“V”), Boron (“B”), Carbon (“C”), Chromium (“Cr”), Manganese (“Mn”), Molybdenum (“Mo”), Niobium (“Nb”), Nickel (“Ni”), Titanium (“Ti”), Tungsten (“W”), and Silicon (“Si”). The Sm-containing magnetic alloy may further have a magnetic flux density of at least 2.5 Tesla.Type: GrantFiled: July 26, 2018Date of Patent: April 20, 2021Assignees: TAIWAN POWDER TECHNOLOGIES CO., LTD., CHINA POWDER TECHNOLOGIES CO., LTD., HPM LABS CO., LTD.Inventors: Kuen-Shyang Hwang, Guo-Jiun Shu, Fang-Cheng Chou
-
Patent number: 10065244Abstract: The present invention discloses a method for fabricating a porous spherical iron-based alloy powder, a powder thereof and a sintered body thereof. The method comprises steps: mixing an iron oxide powder and an alloying powder to form a mixed powder; spray-granulating the mixed powder to form a spherical spray-granulated powder; and placing the spherical spray-granulated powder in a reducing environment and heating it to a temperature of lower than 700° C. to obtain a porous spherical iron-based alloy powder having high flowability, high compressibility, superior sinterability and low cost.Type: GrantFiled: April 18, 2016Date of Patent: September 4, 2018Assignee: Taiwan Powder Technologies Co., Ltd.Inventors: Kuen-Shyang Hwang, Ming-Wei Wu, Yang-Liang Fan
-
Patent number: 9962765Abstract: A method of producing a workpiece includes: providing a first powder, with a hardness of the first powder being less than 250 HV, and with a mean particle size of the first powder being less than 20 ?m; mixing the first powder and a second powder to form a mixed powder, with the mixed powder including carbon, chromium, iron, and elements selected from the group consisting of molybdenum, nickel, copper, niobium, vanadium, tungsten, silicon, cobalt, and manganese; adding a binder and water to the mixed powder; applying a spray drying process to granulate the mixed powder to form a spray-dried powder; applying a dry pressing process to the spray-dried powder to form a green part; applying a debinding process to the green part to form a debound body; and sintering the debound body into a workpiece having a hardness of higher than 250 HV.Type: GrantFiled: October 26, 2012Date of Patent: May 8, 2018Assignee: Taiwan Powder Technologies Co., Ltd.Inventors: Kuen-Shyang Hwang, Chi Kin Cheong
-
Patent number: 8940075Abstract: A method for fabricating fine reduced iron powders comprises the following steps: heating fine iron oxide powders having a mean particle size of smaller than 20 ?m to a reduction temperature of over 700° C. to reduce the fine iron oxide powder into iron powders that are partially sintered into iron powder agglomerates; and performing a crushing-spheroidizing process on the iron powder agglomerates to obtain individual iron powders having a mean particle size of smaller than 20 ?m. The method can reduce iron oxide powers into iron powders having a rounded shape and a high packing density and a high tap density, which are suitable for the metal injection molding process and the inductor fabrication process. The reduced iron powder may further be processed using an annealing process and a second crushing-spheroidizing process in sequence to further increase the sphericity, packing density, and tap density of the reduced iron powder.Type: GrantFiled: April 4, 2012Date of Patent: January 27, 2015Assignee: Taiwan Powder Technologies Co., Ltd.Inventors: Kuen-Shyang Hwang, Ching-Yu Chen, Yung-Chung Lu
-
Publication number: 20140037489Abstract: A method of producing a workpiece is disclosed. The method includes: providing a first powder, a hardness of the first powder being less than 250 HV, and a mean particle size of the first powder being less than 20 ?m; mixing the first powder and a second powder to form a mixed powder; the mixed powder includes carbon, chromium, iron, and elements selected from the group consisting of molybdenum, nickel, copper, niobium, vanadium, tungsten, silicon, cobalt, and manganese; adding a binder and water to the mixed powder; applying a spray drying process to granulate the mixed powder to form a spray-dried powder; applying a dry pressing process to the spray-dried powder to form a green part; applying a debinding process to the green part to form a debound body; and sintering the debound body into a workpiece having a hardness of higher than 250 HV.Type: ApplicationFiled: October 26, 2012Publication date: February 6, 2014Applicant: Taiwan Powder Technologies Co., Ltd.Inventor: Kuen-Shyang Hwang
-
Patent number: 8608868Abstract: A method for improving surface mechanical properties of non-austenitic stainless steels comprises steps of: providing a non-austenitic stainless steel material; placing the non-austenitic stainless steel material in an environment containing at least one austenite-stabilizing element, and implanting the austenite-stabilizing elements into a surface of the non-austenitic stainless steel material to form a modified layer enriched with the austenite-stabilizing elements; and placing the non-austenitic stainless steel material in a carbon-bearing atmosphere to make the modified layer in contact with the carbon-bearing atmosphere, and maintaining the non-austenitic stainless steel material at a carburizing temperature below 600° C. to implant carbon into the modified layer to form a carburized layer.Type: GrantFiled: April 7, 2011Date of Patent: December 17, 2013Assignee: Taiwan Powder Technologies Co., Ltd.Inventors: Kuen-Shyang Hwang, Li-Hui Cheng, Yung-Chung Lu, Yang-Liang Fan, Po-Han Chen
-
Patent number: 8540825Abstract: A low-temperature stainless steel carburization method comprises steps: providing a stainless steel material; placing the stainless steel material in a halogen-free reducing environment and maintaining the stainless steel at a first temperature ranging 1,050 to 1,400° C.; and placing the stainless steel material in a carbon-bearing atmosphere and maintaining the stainless steel material at a second temperature lower than 600° C. to implant carbon atoms into the stainless steel material to form a carburized layer on the surface of the stainless steel material. A halide-bearing gas or solution is not to be applied to activate the passivation layer, so the fabrication cost would be reduced and the safety of carburization process would be enhanced. Besides, the environment can be prevented from halide pollution.Type: GrantFiled: March 29, 2011Date of Patent: September 24, 2013Assignee: Taiwan Powder Technologies Co., Ltd.Inventors: Kuen-Shyang Hwang, Li-Hui Cheng, Yung-Chung Lu
-
Publication number: 20120177531Abstract: A powder composition and a sintered body thereof are presented. The powder is a martensitic stainless steel powder for powder injection molding without deformation problems during sintering. The powder composition includes 0.80-1.40 weight percent (wt %) of carbon (C), less than 1.0 wt % of silicon (Si), less than 1.0 wt % of manganese (Mn), 15.0-18.0 wt % of chromium (Cr), 0.10-2.50 wt % of titanium (Ti), and the remainder iron (Fe). The powder can be sintered with a sintering temperature varying within 50° C. and can reach a high density without distortion, and thereby a good dimensional stability is obtained.Type: ApplicationFiled: January 12, 2011Publication date: July 12, 2012Applicant: TAIWAN POWDER TECHNOLOGIES CO., LTD.Inventors: Kai Hsiang Chuang, Kuen Shyang Hwang
-
Publication number: 20090142219Abstract: A sinter-hardening powder can yield a sintered compact with high strength, high hardness, and high density. A raw powder for sintering includes Fe as its primary component and also comprising 0.1-0.8 wt % C, 5.0-12.0 wt % Ni, 0.1-2.0 wt % Cr, and 0.1-2.0 wt % Mo, wherein the mean particle size of the raw powder for sintering is 20 ?m or less. The sintered and tempered compact, without any quenching treatment, has high hardness, high strength, high density, and good ductility.Type: ApplicationFiled: February 5, 2009Publication date: June 4, 2009Applicant: TAIWAN POWDER TECHNOLOGIES CO., LTD.Inventors: Kuen-Shyang Hwang, Yung-Chung Lu
-
Publication number: 20090142220Abstract: A sinter-hardening raw powder can yield a press-and-sinter compact with high hardness. The raw powder for sintering includes Fe as its primary component and also includes 0.3-0.8 wt % C, 5.0-12.0 wt % Ni, 1.0-5.0 wt % Cr, and 0.1-2.0 wt % Mo, wherein the mean particle size of the raw powder for sintering is between 50 and 100 ?m. The sintered and tempered compact, without any quenching treatment, has high hardness.Type: ApplicationFiled: February 5, 2009Publication date: June 4, 2009Applicant: TAIWAN POWDER TECHNOLOGIES CO., LTD.Inventors: Kuen-Shyang Hwang, Yung-Chung Lu