Patents Assigned to Taiwan Semiconductor
  • Publication number: 20240322003
    Abstract: A method for manufacturing a semiconductor device includes: forming a semiconductor stack on a semiconductor substrate in a flat state, the semiconductor stack including sacrificial layer portions and channel layer portions that are alternately stacked over one another; forming source/drain trenches in the semiconductor stack, each of the source/drain trenches penetrating the channel layer portions, the sacrificial layer portions and an upper portion of the semiconductor substrate, and terminating at a lower portion of the semiconductor substrate, so as to form the channel layer portions into channel features and form the sacrificial layer portions into sacrificial features; transforming the semiconductor substrate from the flat state to a bending state; forming source/drain regions in the source/drain trenches, respectively; and reverting the semiconductor substrate from the bending state back to the flat state, so as to induce a strain in the channel features.
    Type: Application
    Filed: March 20, 2023
    Publication date: September 26, 2024
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chia-Ling PAI, Hsiang-Pi CHANG, Shen-Yang LEE, Fu-Ting YEN, Huang-Lin CHAO, Pinyen LIN, I-Ming CHANG
  • Publication number: 20240321739
    Abstract: Provided are structures and methods for forming structures with surfaces having a W-shaped profile. An exemplary method includes differentially etching a gate material to a recessed surface including a first and second horn and a valley located therebetween including first and second sections and a middle section therebetween; depositing an etch-retarding layer over the recessed surface including first and second edge regions and a central region therebetween, wherein the first edge region is located over the first horn and the first section, the second edge region is located over the second horn and the second section, the central region is located over the middle region, and the central region is thicker than the first edge region and the second edge region; and performing an etch process to recess the horns to establish the gate material with a W-shaped profile.
    Type: Application
    Filed: March 24, 2023
    Publication date: September 26, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jih-Sheng Yang, Li-Wei Yin, Yu-Hsien Lin, Tzu-Wen Pan, Shih-Chieh Chao, Chia Ming Liang, Yih-Ann Lin, Ryan Chia-Jen Chen
  • Patent number: 12100726
    Abstract: The present disclosure, in some embodiments, relates to an image sensor integrated chip. The image sensor integrated chip includes a semiconductor substrate. One or more isolation structures are arranged within one or more trenches in the semiconductor substrate. The one or more trenches are disposed along opposing sides of a photo diode region within the semiconductor substrate. The semiconductor substrate includes an undulating exterior having rounded corners arranged laterally between neighboring ones of a plurality of flat surfaces. The rounded corners and the plurality of flat surfaces forming a plurality of triangular shaped protrusions arranged between the one or more isolation structures, as viewed along a cross-sectional view.
    Type: Grant
    Filed: April 21, 2023
    Date of Patent: September 24, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tung-Ting Wu, Jhy-Jyi Sze, Yimin Huang
  • Patent number: 12100672
    Abstract: A device includes an interconnect device attached to a redistribution structure, wherein the interconnect device includes conductive routing connected to conductive connectors disposed on a first side of the interconnect device, a molding material at least laterally surrounding the interconnect device, a metallization pattern over the molding material and the first side of the interconnect device, wherein the metallization pattern is electrically connected to the conductive connectors, first external connectors connected to the metallization pattern, and semiconductor devices connected to the first external connectors.
    Type: Grant
    Filed: July 20, 2022
    Date of Patent: September 24, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Jiun Yi Wu, Chen-Hua Yu
  • Patent number: 12099090
    Abstract: A semiconductor device has a cell region including active regions that extend in a first direction and in which are formed components of transistors. The transistors of the cell region are arranged to function as a scan insertion D flip flop (SDFQ). The SDFQ includes a multiplexer serially connected at an internal node to a D flip-flop (FF). The transistors of the multiplexer include data transistors for selecting a data input signal, the data transistors having a first channel configuration with a first channel size, and scan transistors of the multiplexer for selecting a scan input signal, the scan transistors having a second channel configuration with a second channel size. The second channel size is smaller than the first channel size.
    Type: Grant
    Filed: August 10, 2023
    Date of Patent: September 24, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Huaixin Xian, Changlin Huang, Qingchao Meng, Jerry Chang Jui Kao
  • Patent number: 12100745
    Abstract: The structure of a semiconductor device with dual metal capped via contact structures and a method of fabricating the semiconductor device are disclosed. A method of fabricating the semiconductor device includes forming a source/drain (S/D) region and a gate structure on a fin structure, forming S/D and gate contact structures on the S/D region and the gate structure, respectively, forming first and second via contact structures on the S/D and gate contact structures, respectively, and forming first and second interconnect structures on the first and second via contact structures, respectively. The forming of the first and second via contact structures includes forming a first via contact plug interposed between first top and bottom metal capping layers and a second via contact plug interposed between second top and bottom metal capping layers, respectively.
    Type: Grant
    Filed: April 24, 2023
    Date of Patent: September 24, 2024
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chung-Liang Cheng, Ziwei Fang
  • Patent number: 12100628
    Abstract: Interconnect structures and corresponding formation techniques for fin-like field effect transistors (FinFETs) are disclosed herein. An exemplary interconnect structure for a FinFET includes a gate node via electrically coupled to a gate of the FinFET, a source node via electrically coupled to a source of the FinFET, and a drain node via electrically coupled to a drain of the FinFET. A source node via dimension ratio defines a longest dimension of the source node via relative to a shortest dimension of the source node via, and a drain node via dimension ratio defines a longest dimension of the drain node via relative to a shortest dimension of the drain node via. The source node via dimension ratio is greater than the drain node via dimension ratio. In some implementations, the source node via dimension ratio is greater than 2, and the drain node via dimension ratio is less than 1.2.
    Type: Grant
    Filed: June 17, 2022
    Date of Patent: September 24, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventor: Jhon Jhy Liaw
  • Patent number: 12099301
    Abstract: A method of manufacturing a semiconductor device includes forming a photoresist underlayer over a semiconductor substrate. The photoresist underlayer includes a polymer, including a main polymer chain having pendant target groups, and pendant organic groups or photoacid generator groups. The main polymer chain is a polystyrene, a polyhydroxystyrene, a polyacrylate, a polymethylacrylate, a polymethylmethacrylate, a polyacrylic acid, a polyvinyl ester, a polymaleic ester, a poly(methacrylonitrile), or a poly(methacrylamide). Pendant target groups are selected from the group consisting of a substituted or unsubstituted: C2-C30 diol group, C1-C30 aldehyde group, and C3-C30 ketone group. Pendant organic groups are C3-C30 aliphatic or aromatic groups having at least one photosensitive functional group, and pendant photoacid generator groups are C3-C50 substituted aliphatic or aromatic groups. A photoresist layer is formed over the photoresist underlayer.
    Type: Grant
    Filed: April 15, 2021
    Date of Patent: September 24, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventor: Chien-Chih Chen
  • Patent number: 12101921
    Abstract: An N-type metal oxide semiconductor (NMOS) transistor includes a first gate and a first spacer structure disposed on a first sidewall of the first gate in a first direction. The first spacer structure has a first thickness in the first direction and measured from an outermost point of an outer surface of the first spacer structure to the first sidewall. A P-type metal oxide semiconductor (PMOS) transistor includes a second gate and a second spacer structure disposed on a second sidewall of the second gate in the first direction and measured from an outermost point of an outer surface of the second spacer structure to the second sidewall. The second spacer structure has a second thickness that is greater than the first thickness. The NMOS transistor is a pass-gate of a static random access memory (SRAM) cell, and the PMOS transistor is a pull-up of the SRAM cell.
    Type: Grant
    Filed: July 22, 2022
    Date of Patent: September 24, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Shih-Hao Lin, Chih-Chuan Yang, Hsin-Wen Su, Kian-Long Lim, Chien-Chih Lin
  • Patent number: 12100720
    Abstract: A method for forming an image sensor package is provided. An image sensor chip is formed over a package substrate. A protection layer is formed overlying the image sensor chip. The protection layer has a planar top surface and a bottom surface lining and contacting structures under the protection layer. An opening is formed into the protection layer and spaced around a periphery of the image sensor chip. A light shielding material is filled in the opening to form an on-wafer shield structure having a sidewall directly contact the protection layer.
    Type: Grant
    Filed: July 27, 2023
    Date of Patent: September 24, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Wen-Hau Wu, Chun-Hao Chuang, Kazuaki Hashimoto, Keng-Yu Chou, Wei-Chieh Chiang, Cheng Yu Huang
  • Patent number: 12100753
    Abstract: Gated MIS tunnel diode devices having a controllable negative transconductance behavior are provided. In some embodiments, a device includes a substrate, a tunnel diode dielectric layer on a surface of the substrate, and a gate dielectric layer on the surface of the substrate and adjacent to the tunnel diode dielectric layer. A tunnel diode electrode is disposed on the tunnel diode dielectric layer, and a gate electrode is disposed on the gate dielectric layer. A substrate electrode is disposed on the surface of the substrate, and the tunnel diode electrode is positioned between the gate electrode and the substrate electrode.
    Type: Grant
    Filed: July 28, 2023
    Date of Patent: September 24, 2024
    Assignees: Taiwan Semiconductor Manufacturing Co., Ltd., National Taiwan University
    Inventors: Jenn-Gwo Hwu, Chien-Shun Liao
  • Patent number: 12100751
    Abstract: A method of forming a semiconductor device includes: forming a dummy gate over a fin, where the fin protrudes above a substrate; surrounding the dummy gate with a dielectric material; and replacing the dummy gate with a replacement gate structure, where replacing the dummy gate includes: forming a gate trench in the dielectric material, where forming the gate trench includes removing the dummy gate; forming a metal-gate stack in the gate trench, where forming the metal-gate stack includes forming a gate dielectric layer, a first work function layer, and a gap-filling material sequentially in the gate trench; and enlarging a volume of the gap-filling material in the gate trench.
    Type: Grant
    Filed: March 20, 2023
    Date of Patent: September 24, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chih-Hsiang Fan, Tsung-Han Shen, Jia-Ming Lin, Wei-Chin Lee, Hsien-Ming Lee, Chi On Chui
  • Patent number: 12100625
    Abstract: Semiconductor device and the manufacturing method thereof are disclosed herein. An exemplary semiconductor device comprises a first semiconductor fin and a second semiconductor fin formed over a substrate, wherein lower portions of the first semiconductor fin and the second semiconductor fin are separated by an isolation structure; a first gate stack formed over the first semiconductor fin and a second gate stack formed over the second semiconductor fin; and a separation feature separating the first gate stack and the second gate stack, wherein the separation feature includes a first dielectric layer and a second dielectric layer with an air gap defined therebetween, and a bottom portion of the separation feature being inserted into the isolation structure.
    Type: Grant
    Filed: July 25, 2023
    Date of Patent: September 24, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Wei-Lun Min, Xusheng Wu, Chang-Miao Liu
  • Patent number: 12100604
    Abstract: A plasma discharge detection system detects undesirable plasma discharge events within a semiconductor process chamber. The plasma discharge detection system includes one or more cameras positioned around the semiconductor process chamber. The cameras capture images from within the semiconductor process chamber. The plasma discharge detection system includes a control system that receives the images from the cameras. The control system analyzes the images and detects plasma discharge within the semiconductor process chamber based on the images. The control system can adjust a semiconductor process in real time responsive to detecting the plasma discharge.
    Type: Grant
    Filed: July 25, 2022
    Date of Patent: September 24, 2024
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventor: Chih-Yu Wang
  • Patent number: 12100767
    Abstract: A semiconductor includes a gate stack over a substrate. The semiconductor device further includes an interlayer dielectric (ILD) at least partially enclosing the gate stack. The ILD includes a portion doped with a large species material, wherein the portion includes a first sidewall substantially perpendicular to a top-most surface of the ILD, and the portion includes a second sidewall having a positive angle with respect to the first sidewall.
    Type: Grant
    Filed: February 10, 2022
    Date of Patent: September 24, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Cheng-Ta Wu, Chii-Ming Wu, Shiu-Ko Jangjian, Kun-Tzu Lin, Lan-Fang Chang
  • Patent number: 12100698
    Abstract: Semiconductor device includes light-emitting die and semiconductor package. Light emitting die includes substrate and first conductive pad. Substrate has emission region located at side surface. First conductive pad is located at bottom surface of substrate. Semiconductor package includes semiconductor-on-insulator substrate, interconnection structure, second conductive pad, and through semiconductor via. Semiconductor-on-insulator substrate has linear waveguide formed therein. Interconnection structure is disposed on semiconductor-on-insulator substrate. Edge coupler is embedded within interconnection structure and is connected to linear waveguide. Semiconductor-on-insulator substrate and interconnection structure include recess in which light-emitting die is disposed. Edge coupler is located close to sidewall of recess. Second conductive pad is located at bottom of recess. Through semiconductor via extends across semiconductor-on-insulator substrate to contact second conductive pad.
    Type: Grant
    Filed: August 19, 2021
    Date of Patent: September 24, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Chieh Chang, Chung-Hao Tsai, Chen-Hua Yu, Chuei-Tang Wang
  • Patent number: 12100655
    Abstract: An integrated circuit includes an array of metal conducting lines in a metal layer overlying an insulation layer supported by a substrate, a first metal segment lineup having multiple metal segments in the metal layer between a first metal conducting line and a second metal conducting line in the array of metal conducting lines, and an electric circuit having a first input and a second input. The first input is connected to the first metal conducting line and the second input is connected to the second metal conducting line, and a first length of the first metal conducting line is equal to a second length of the second metal conducting line.
    Type: Grant
    Filed: May 17, 2022
    Date of Patent: September 24, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chung-Chieh Yang, Ching-Ting Lu, Yung-Chow Peng
  • Patent number: 12100757
    Abstract: In some embodiments, the present disclosure relates to a method of forming a high electron mobility transistor (HEMT) device. The method includes forming a passivation layer over a substrate. A source contact and a drain contact are formed within the passivation layer. A part of the passivation layer is removed to form a cavity. The cavity has a lower portion formed by a first sidewall and a second sidewall of the passivation layer and an upper portion formed by the first sidewall of the passivation layer and a sidewall of the source contact. A gate structure is formed within the passivation layer between the drain contact and the cavity. A cap structure is formed within the cavity.
    Type: Grant
    Filed: July 7, 2023
    Date of Patent: September 24, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ming-Cheng Lin, Chen-Bau Wu, Chun Lin Tsai, Haw-Yun Wu, Liang-Yu Su, Yun-Hsiang Wang
  • Patent number: 12101938
    Abstract: A semiconductor device includes a substrate having a first area and a second area. The semiconductor device in the first area includes a first memory layer and a first semiconductor channel coupled to a portion of the first memory layer. The semiconductor device in the first area further includes a first conductive structure and a second conductive structure coupled to end portions of the first semiconductor channel. The semiconductor device in the second area includes a third conductive structure and a second memory layer. The semiconductor device in the second area includes a second semiconductor channel that comprises: (i) a first vertical portion coupled to a portion of the second memory layer; and (ii) a lateral portion coupled to a top surface of the third conductive structure. The semiconductor device in the second area includes a fourth conductive structure coupled to an end portion of the second semiconductor channel.
    Type: Grant
    Filed: September 30, 2021
    Date of Patent: September 24, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Meng-Han Lin, Chia-En Huang
  • Patent number: 12099310
    Abstract: An extreme ultraviolet (EUV) photolithography system cleans debris from an EUV reticle. The system includes a cleaning electrode configured to be positioned adjacent the EUV reticle. The system includes a voltage source that helps draw debris from the EUV reticle toward the cleaning electrode by applying a voltage of alternating polarity to the cleaning electrode.
    Type: Grant
    Filed: May 9, 2023
    Date of Patent: September 24, 2024
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yen-Hui Li, Cheng-Han Yeh, Tzung-Chi Fu