Patents Assigned to TAKAHASHI METAL INDUSTRIES CO., LTD.
  • Patent number: 11325847
    Abstract: A method of selectively and efficiently adsorbing an anion such as a phosphate ion which adversely affect the environment when discharged without any treatment, or an anion which can be used beneficially when recovered, from waste water or a solution including such ion using an adsorbent. A method of adsorbing an anion of interest from an aqueous solution (A) containing the anion of interest and the other anion using an anion adsorbent, including performing at least (1) a step of contacting the aqueous solution (A) having a pH of 5.8 or less with the anion adsorbent to allow the anions to be adsorbed to the anion adsorbent, and then (2) a step of contacting water or an aqueous solution (B) having a pH of 5.2 to 11 with the anion adsorbent to desorb at least a part of the other anion adsorbed to the anion adsorbent from the anion adsorbent.
    Type: Grant
    Filed: June 11, 2018
    Date of Patent: May 10, 2022
    Assignees: TAKAHASHI METAL INDUSTRIES CO., LTD., NIPPON SODA CO., LTD.
    Inventors: Toshiyasu Hirokawa, Tsuyoshi Noishiki, Nobuo Kimura, Yuichi Tateishi, Yukiko Takahashi
  • Publication number: 20210139347
    Abstract: A method of selectively and efficiently adsorbing an anion such as a phosphate ion which adversely affect the environment when discharged without any treatment, or an anion which can be used beneficially when recovered, from waste water or a solution including such ion using an adsorbent. A method of adsorbing an anion of interest from an aqueous solution (A) containing the anion of interest and the other anion using an anion adsorbent, including performing at least (1) a step of contacting the aqueous solution (A) having a pH of 5.8 or less with the anion adsorbent to allow the anions to be adsorbed to the anion adsorbent, and then (2) a step of contacting water or an aqueous solution (B) having a pH of 5.2 to 11 with the anion adsorbent to desorb at least a part of the other anion adsorbed to the anion adsorbent from the anion adsorbent.
    Type: Application
    Filed: June 11, 2018
    Publication date: May 13, 2021
    Applicants: TAKAHASHI METAL INDUSTRIES CO., LTD., NIPPON SODA CO., LTD.
    Inventors: Toshiyasu HIROKAWA, Tsuyoshi NOISHIKI, Nobuo KIMURA, Yuichi TATEISHI, Yukiko TAKAHASHI
  • Patent number: 10843166
    Abstract: Adsorbent particle includes iron oxyhydroxide as a main component, wherein 90% or more of volume of particle is constituted of a granular crystal having a crystal grain size of 20 nm or less or a columnar crystal having a width of 10 nm or less and length of 30 nm or less and particle has BET specific surface area of 250 m2/g or more. Above adsorbent particle is produced by a method including a step of generating iron oxyhydroxide by adding base represented by YOH (wherein Y represents a monovalent atom or atomic group) to solution including at least one selected from trivalent iron compounds represented by FeX3 (wherein X represents a monovalent atom or atomic group other than OH) while adjusting pH to pH 3 to 6, wherein solution has total concentration of FeX3, YOH and other electrolytes of 10% by mass or more at completion of the step.
    Type: Grant
    Filed: December 19, 2016
    Date of Patent: November 24, 2020
    Assignees: TAKAHASHI METAL INDUSTRIES CO., LTD., NIPPON SODA CO., LTD.
    Inventors: Toshiyasu Hirokawa, Tsuyoshi Noishiki, Nobuo Kimura, Masato Amaike, Yukiko Takahashi
  • Publication number: 20180369782
    Abstract: Adsorbent particle includes iron oxyhydroxide as a main component, wherein 90% or more of volume of particle is constituted of a granular crystal having a crystal grain size of 20 nm or less or a columnar crystal having a width of 10 nm or less and length of 30 nm or less and particle has BET specific surface area of 250 m2/g or more. Above adsorbent particle is produced by a method including a step of generating iron oxyhydroxide by adding base represented by YOH (wherein Y represents a monovalent atom or atomic group) to solution including at least one selected from trivalent iron compounds represented by FeX3 (wherein X represents a monovalent atom or atomic group other than OH) while adjusting pH to pH 3 to 6, wherein solution has total concentration of FeX3, YOH and other electrolytes of 10% by mass or more at completion of the step.
    Type: Application
    Filed: December 19, 2016
    Publication date: December 27, 2018
    Applicants: TAKAHASHI METAL INDUSTRIES CO., LTD., NIPPON SODA CO., LTD.
    Inventors: Toshiyasu HIROKAWA, Tsuyoshi NOISHIKI, Nobuo KIMURA, Masato AMAIKE, Yukiko TAKAHASHI