Patents Assigned to Takara Bio, Inc.
  • Publication number: 20210062141
    Abstract: In the present invention, lymphocytes are efficiently grown by culturing lymphocytes in the presence of a novel recombinant fibronectin fragment.
    Type: Application
    Filed: January 24, 2019
    Publication date: March 4, 2021
    Applicant: TAKARA BIO INC.
    Inventors: Tomomi OTSUJI, Yuka HIRASE, Asako HATSUYAMA, Sachiko OKAMOTO, Tatsuji ENOKI, Junichi MINENO
  • Patent number: 10822392
    Abstract: Disclosed herein are chimeric antigen receptors (CARs) comprising an intracellular segment comprising an interleukin receptor chain, a JAK-binding motif, a Signal Transducer and Activator of Transcription (STAT) 5 association motif and/or a CD3? intracellular signaling domain comprising an exogenous STAT3 association motif, as well as cells and 5 compositions comprising said CARs and uses thereof.
    Type: Grant
    Filed: May 14, 2019
    Date of Patent: November 3, 2020
    Assignees: University Health Network, Takara Bio Inc.
    Inventors: Shinya Tanaka, Naoto Hirano, Yuki Kagoya
  • Patent number: 10760074
    Abstract: A composition for use in amplifying cDNA synthesized by a reverse transcription reaction and detecting RNA that serves as a template of the reverse transcription reaction, the composition containing a thermostable DNA polymerase, a thermostable ribonuclease H, and an intercalating dye. Since the composition of the present invention can suppress the influences to the nucleic acid amplification reaction by RNA that serves as a template for cDNA synthesis, the composition is useful in the detection of RNA, and more useful in quantification of RNA having a desired sequence by real-time RT-PCR.
    Type: Grant
    Filed: August 31, 2009
    Date of Patent: September 1, 2020
    Assignee: TAKARA BIO INC.
    Inventors: Kanako Usui, Takashi Uemori, Hiroyuki Mukai, Ikunoshin Kato
  • Patent number: 10731226
    Abstract: A method for quantification of an adeno-associated virus genome, including the steps of (a) preparing a composition containing a sample, at least one primer pair for use in amplification of only a nucleotide sequence contained in inverted terminal repeats of an adeno-associated virus, and an intercalating dye; (b) performing nucleic acid amplification reaction using the composition prepared in the step (a); and (c) detecting an amplified product obtained in the step (b). The present invention is especially useful in the fields of medicine, gene engineering, and biology.
    Type: Grant
    Filed: November 13, 2018
    Date of Patent: August 4, 2020
    Assignee: TAKARA BIO INC.
    Inventors: Tamaki Akashika, Katsuyuki Dodo, Masanari Kitagawa
  • Publication number: 20200071675
    Abstract: The present invention relates to a method for producing endothelial cells, including carrying out: (a) inducing a population of mesoderm-lineage cells containing endothelial progenitor cells from pluripotent stem cells without forming an embryoid body; and (b) culturing the population of mesoderm-lineage cells containing endothelial progenitor cells in the presence of RepSox, in this order. According to the present invention, endothelial cells with high quality can be efficiently produced from pluripotent stem cells. The endothelial cells obtained by the method of the present invention are useful for the production of, for example, a myocardial sheet, and expected to be utilized in the treatment of a heart disease. A myocardial sheet can be produced by mixing the endothelial cells obtained by the method of the present invention with myocardial cells and mural cells and culturing the cells.
    Type: Application
    Filed: December 1, 2017
    Publication date: March 5, 2020
    Applicant: TAKARA BIO INC.
    Inventors: Yuki YAMAMOTO, Tatsuji ENOKI, Yasuhiro TOSAKA, Yoko YAMAGUCHI, Junichi MINENO
  • Publication number: 20200002384
    Abstract: The present invention provides: a mutant of adeno-associated virus (AAV) capsid protein, which contains at least one amino acid substitution in PLA2 domain when compared with the amino acid sequence for wild-type AAV capsid protein; a nucleic acid encoding the mutant; a cell containing the nucleic acid; a method for producing a recombinant AAV particle, comprising a step of culturing the cell to produce the recombinant AAV particle; a recombinant AAV particle containing the mutant; a composition containing the recombinant AAV particle; and a method for transferring a gene into a target cell, comprising a step of bringing the recombinant AAV particle into contact with the target cell.
    Type: Application
    Filed: January 29, 2018
    Publication date: January 2, 2020
    Applicants: NIPPON MEDICAL SCHOOL FOUNDATION, NATIONAL CENTER OF NEUROLOGY AND PSYCHIATRY, TAKARA BIO INC.
    Inventors: Takashi OKADA, Hironori OKADA, Hiromi KINOH, Tatsuji ENOKI, Toshikazu NISHIE, Junichi MINENO
  • Patent number: 10415020
    Abstract: Provided is a method for producing non-enveloped viral particles, comprising a step for obtaining a fraction containing non-enveloped viral particles by removing precipitates which are produced in a step for adding a substance which reduces the solubility of proteins under acidic conditions and/or a substance which precipitates under acidic conditions to a neutral or basic sample containing non-enveloped viral particles, and acidifying the sample after the addition of the substance.
    Type: Grant
    Filed: January 8, 2016
    Date of Patent: September 17, 2019
    Assignee: TAKARA BIO INC.
    Inventors: Yasuhiro Kawano, Shuohao Huang, Tatsuji Enoki, Masanari Kitagawa
  • Patent number: 10336810
    Abstract: Disclosed herein are chimeric antigen receptors (CARs) comprising an intracellular segment comprising an interleukin receptor chain, a JAK-binding motif, a Signal Transducer and Activator of Transcription (STAT) 5 association motif and/or a CD3? intracellular signaling domain comprising an exogenous STAT3 association motif, as well as cells and 5 compositions comprising said CARs and uses thereof.
    Type: Grant
    Filed: February 11, 2016
    Date of Patent: July 2, 2019
    Assignees: University Health Network, Takara Bio Inc.
    Inventors: Shinya Tanaka, Naoto Hirano, Yuki Kagoya
  • Publication number: 20190194613
    Abstract: The purpose of the present invention is to efficiently produce microglia from pluripotent stem cells. Provided is a method for producing microglia from pluripotent stem cells, comprising the following steps: (a) a step of co-culturing a pluripotent stem cell together with a feeder cell for 7 days or longer, and obtaining a blood progenitor cell; (b) a step of co-culturing the blood progenitor cell obtained in step (a) together with a feeder cell in the presence of IL-3 and/or GM-CSF, and obtaining an embryonic monocyte; and (c) a step of, in the presence of M-CSF, co-culturing the embryonic monocyte obtained in step (b) together with an astrocyte, or culturing the embryonic monocyte using an astrocyte supernatant.
    Type: Application
    Filed: September 1, 2017
    Publication date: June 27, 2019
    Applicant: TAKARA BIO INC.
    Inventor: Hiroki SAITO
  • Patent number: 10294465
    Abstract: Provided are a mismatch-specific cleavage reaction using a novel heat-resistant mismatch nuclease, a method for removing errors in a nucleic acid amplification reaction using the mismatch nuclease, a method for inhibiting the amplification of a nucleic acid having a specific base sequence during a nucleic acid amplification reaction, and a method for detecting a nucleic acid having a single-base polymorphic mutation using this inhibition method.
    Type: Grant
    Filed: September 26, 2018
    Date of Patent: May 21, 2019
    Assignee: TAKARA BIO INC.
    Inventors: Kiyoyuki Matsumura, Nariaki Takatsu, Takashi Uemori, Hiroyuki Mukai
  • Patent number: 10280412
    Abstract: Provided are a mismatch-specific cleavage reaction using a novel heat-resistant mismatch nuclease, a method for removing errors in a nucleic acid amplification reaction using the mismatch nuclease, a method for inhibiting the amplification of a nucleic acid having a specific base sequence during a nucleic acid amplification reaction, and a method for detecting a nucleic acid having a single-base polymorphic mutation using this inhibition method.
    Type: Grant
    Filed: December 12, 2018
    Date of Patent: May 7, 2019
    Assignee: TAKARA BIO INC.
    Inventors: Kiyoyuki Matsumura, Nariaki Takatsu, Takashi Uemori, Hiroyuki Mukai
  • Publication number: 20190100736
    Abstract: Provided are a mismatch-specific cleavage reaction using a novel heat-resistant mismatch nuclease, a method for removing errors in a nucleic acid amplification reaction using the mismatch nuclease, a method for inhibiting the amplification of a nucleic acid having a specific base sequence during a nucleic acid amplification reaction, and a method for detecting a nucleic acid having a single-base polymorphic mutation using this inhibition method.
    Type: Application
    Filed: December 12, 2018
    Publication date: April 4, 2019
    Applicant: TAKARA BIO INC.
    Inventors: Kiyoyuki MATSUMURA, Nariaki TAKATSU, Takashi UEMORI, Hiroyuki MUKAI
  • Publication number: 20190085307
    Abstract: Provided are a mismatch-specific cleavage reaction using a novel heat-resistant mismatch nuclease, a method for removing errors in a nucleic acid amplification reaction using the mismatch nuclease, a method for inhibiting the amplification of a nucleic acid having a specific base sequence during a nucleic acid amplification reaction, and a method for detecting a nucleic acid having a single-base polymorphic mutation using this inhibition method.
    Type: Application
    Filed: September 26, 2018
    Publication date: March 21, 2019
    Applicant: TAKARA BIO INC.
    Inventors: Kiyoyuki MATSUMURA, Nariaki TAKATSU, Takashi UEMORI, Hiroyuki MUKAI
  • Publication number: 20190062851
    Abstract: A method for quantification of an adeno-associated virus genome, including the steps of (a) preparing a composition containing a sample, at least one primer pair for use in amplification of only a nucleotide sequence contained in inverted terminal repeats of an adeno-associated virus, and an intercalating dye; (b) performing nucleic acid amplification reaction using the composition prepared in the step (a); and (c) detecting an amplified product obtained in the step (b). The present invention is especially useful in the fields of medicine, gene engineering, and biology.
    Type: Application
    Filed: November 13, 2018
    Publication date: February 28, 2019
    Applicant: TAKARA BIO INC.
    Inventors: Tamaki AKASHIKA, Katsuyuki DODO, Masanari KITAGAWA
  • Publication number: 20190055527
    Abstract: The present invention relates to a fusion polypeptide containing, in a direction of from an N-terminal side to a C-terminal side, one or more peptides which bind to a PCNA, and a polypeptide having a DNA polymerase activity; a method for amplifying nucleic acids using the polypeptide; and a composition and a kit, containing the polypeptide. According to the present invention, it is made possible to amplify a long-strand DNA in a short time in amplifying nucleic acids in the presence of PCNA even with a Pol I-type DNA polymerase.
    Type: Application
    Filed: November 24, 2016
    Publication date: February 21, 2019
    Applicants: KYUSHU UNIVERSITY, NATIONAL UNIVERSITY CORPORATION, TAKARA BIO INC.
    Inventors: Yoshizumi ISHINO, Sonoko ISHINO, Takeshi YAMAGAMI, Takashi UEMORI, Nariaki TAKATSU
  • Patent number: 10196618
    Abstract: Provided are a mismatch-specific cleavage reaction using a novel heat-resistant mismatch nuclease, a method for removing errors in a nucleic acid amplification reaction using the mismatch nuclease, a method for inhibiting the amplification of a nucleic acid having a specific base sequence during a nucleic acid amplification reaction, and a method for detecting a nucleic acid having a single-base polymorphic mutation using this inhibition method.
    Type: Grant
    Filed: September 26, 2018
    Date of Patent: February 5, 2019
    Assignee: TAKARA BIO INC.
    Inventors: Kiyoyuki Matsumura, Nariaki Takatsu, Takashi Uemori, Hiroyuki Mukai
  • Publication number: 20190017037
    Abstract: Provided are a mismatch-specific cleavage reaction using a novel heat-resistant mismatch nuclease, a method for removing errors in a nucleic acid amplification reaction using the mismatch nuclease, a method for inhibiting the amplification of a nucleic acid having a specific base sequence during a nucleic acid amplification reaction, and a method for detecting a nucleic acid having a single-base polymorphic mutation using this inhibition method.
    Type: Application
    Filed: September 26, 2018
    Publication date: January 17, 2019
    Applicant: TAKARA BIO INC.
    Inventors: Kiyoyuki MATSUMURA, Nariaki TAKATSU, Takashi UEMORI, Hiroyuki MUKAI
  • Patent number: 10161011
    Abstract: A method for quantification of an adeno-associated virus genome, including the steps of (a) preparing a composition containing a sample, at least one primer pair for use in amplification of only a nucleotide sequence contained in inverted terminal repeats of an adeno-associated virus, and an intercalating dye; (b) performing nucleic acid amplification reaction using the composition prepared in the step (a); and (c) detecting an amplified product obtained in the step (b). The present invention is especially useful in the fields of medicine, gene engineering, and biology.
    Type: Grant
    Filed: November 27, 2014
    Date of Patent: December 25, 2018
    Assignee: TAKARA BIO INC.
    Inventors: Tamaki Akashika, Katsuyuki Dodo, Masanari Kitagawa
  • Publication number: 20180362933
    Abstract: The present invention produces a large number of mesenchymal stem cells in a short time in a medium containing no heterologous components by including a step for culturing a cell population containing mesenchymal stem cells in the presence of a fibronectin fragment.
    Type: Application
    Filed: December 2, 2016
    Publication date: December 20, 2018
    Applicant: TAKARA BIO INC.
    Inventors: Kenichi TAHARA, Ikuei NUKAYA, Mitsuko IDENO, Saori YAMAGUCHI, Junichi MINENO
  • Publication number: 20180346889
    Abstract: The present invention relates to a Thermus aquaticus (Taq) polymerase having a strand displacement activity in which an amino acid residue in a template DNA binding site of the DNA polymerase is substituted with an amino acid to increase a total charge in the site, a nucleic acid encoding the polymerase, a vector containing the nucleic acid, a transformant containing the vector containing the nucleic acid or the nucleic acid, a method for producing the polymerase, a method for amplifying nucleic acids utilizing the polymerase, and a kit containing the polymerase. According to the present invention, a DNA polymerase having a high thermostability, capable of efficiently replicating a long-strand of a template DNA, and having a strong strand displacement activity is provided.
    Type: Application
    Filed: November 24, 2016
    Publication date: December 6, 2018
    Applicants: KYUSHU UNIVERSITY, NATIONAL UNIVERSITY CORPORATION, TAKARA BIO INC.
    Inventors: Yoshizumi ISHINO, Sonoko ISHINO, Takeshi YAMAGAMI, Takashi UEMORI, Nariaki TAKATSU