Patents Assigned to TARGET SYSTEMELEKTRONIK GMBH & CO. KG
  • Patent number: 11914085
    Abstract: Provided are transparent molded bodies for use as a scintillator for measuring the type and intensity of ionizing and non-ionizing radiation, including an organic polymer and, if desired, at least one additive which, under the influence of at least one of ionizing and non-ionizing radiation, emits scintillation radiation in the range from UV to IR light, the aim is to improve optical and mechanical properties, robustness against environmental influences and the manufacturability. This was achieved in that the organic polymer at least in part contains a polyaddition product of polyfunctional isocyanates and one or more polyfunctional hardener components.
    Type: Grant
    Filed: August 27, 2018
    Date of Patent: February 27, 2024
    Assignee: TARGET SYSTEMELEKTRONIK GMBH & CO. KG
    Inventors: Helmut Ritter, Olga Leonidovna Maiatska, Jürgen Stein
  • Patent number: 11448777
    Abstract: A method is provided for determining the dose rate {dot over (H)} of nuclear radiation field, namely a gamma radiation field, with a radiation detection system (RDS), comprising a scintillator, a photodetector, an amplifier and a pulse measurement electronics. The pulse measurement electronics includes a sampling analog to digital converter, where the nuclear radiation deposes at least some of its energy in the scintillator, thereby producing excited states in the scintillation material, with the excited states decaying thereafter under emission of photons with a decay time ?. Photons are absorbed by the photodetector under emission of electrons, those electrons forming a current pulse, said current pulse being amplified so that the resulting current signal can be processed further in order to determine the charge of the pulse measured.
    Type: Grant
    Filed: November 6, 2020
    Date of Patent: September 20, 2022
    Assignee: TARGET SYSTEMELEKTRONIK GMBH & CO. KG
    Inventor: Jürgen Stein
  • Patent number: 11163076
    Abstract: A method of measurement of both gamma radiation and neutrons with energies above 500 keV is provided utilizing a scintillation crystal. The method includes allowing gamma quanta and neutrons to interact with the scintillation crystal, collecting light emitted by the scintillation crystal and letting that light interact with a photo detector, and amplifying the signal output. The method then digitizes the amplifier output signal, determines a charge collection time for each interaction measured, determining light decay times, separating signals with distinct decay times, determining a total charge collected from signals with the distinct decay times, and sorting charge signals in a spectrum. The method then counts signals with a second decay time and determines a count rate.
    Type: Grant
    Filed: November 8, 2019
    Date of Patent: November 2, 2021
    Assignee: TARGET SYSTEMELEKTRONIK GMBH & CO. KG
    Inventor: Jürgen Stein
  • Patent number: 10527742
    Abstract: A self-stabilizing scintillation detector system for the measurement of nuclear radiation, preferably gamma radiation, is provided, the system comprising a scintillation crystal, a photo detector, a photomultiplier (PMT) and one or two fast digital sampling analog to digital converters (ADC), where the scintillator is selected from a group of materials having a light decay time of at least 1 ns, and where the PMT is set to its highest possible gain. A first ADC for processing the single photo electron induced signals is connected to the PMT output, namely the anode output, this first ADC being set to operate with a very high sampling rate of at least 10 MHz, and a second ADC for processing the nuclear particle induced signals is connected to one of the PMT's dynodes with a significantly lower amplification.
    Type: Grant
    Filed: November 10, 2016
    Date of Patent: January 7, 2020
    Assignee: TARGET SYSTEMELEKTRONIK GMBH & CO. KG
    Inventor: Jürgen Stein
  • Patent number: 10520612
    Abstract: Readout circuitry for a PMT is provided, which is adapted for delivering a pair of first and second synchronous output voltage signals to a pair of outputs, the first output signal of the pair having a first AC portion being representative of a charge flow of an anode of the PMT over time, the second output signal of the pair having a second AC portion which corresponds to an inverted form of the first AC portion of the first output signal. The readout circuitry comprises a first sub-circuitry which is adapted to derive the first output signal from the charge flow over time of the anode, and a second sub-circuitry which is adapted to derive the second output signal from a charge flow over time of at least one dynode of the PMT.
    Type: Grant
    Filed: April 20, 2018
    Date of Patent: December 31, 2019
    Assignee: TARGET SYSTEMELEKTRONIK GMBH & CO. KG
    Inventor: Jürgen Stein
  • Patent number: 10048393
    Abstract: A self-stabilizing scintillation detector system for the measurement of nuclear radiation, preferably gamma radiation, is provided, the system comprising a scintillation crystal, a photo detector, a photomultiplier (PMT) with n dynodes and an evaluation system connected to the output port of the PMT, i.e. the anode of the PMT, the PMT comprising at least two connections to at least two different dynodes of the PMT, a device for measuring the electric current at the at least two dynodes, as well as an electronic device for determining the quotient of the measured at least two electric currents at the at least two dynodes, said quotient being a measure for the gain between the two dynodes, further comprising means for comparing the measured quotient with a reference value, and means for adjusting the gain of the PMT by utilizing the gain change over time.
    Type: Grant
    Filed: November 10, 2016
    Date of Patent: August 14, 2018
    Assignee: TARGET SYSTEMELEKTRONIK GMBH & CO. KG
    Inventor: Jürgen Stein
  • Patent number: 9864076
    Abstract: A method and device are provided for obtaining the energy of nuclear radiation from a scintillation detector system for the measurement of nuclear radiation the device comprising a scintillation crystal, a light readout detector and a fast digital sampling analog to digital converter. The method comprises obtaining the anode current at the LRD for at least one scintillation event with N photo electron charges at the entrance of the LRD, sampling the measured anode current, obtaining the function of the scintillation pulse charges Qdint(N, G) at the anode of the LRD from said scintillation events, obtaining the RMS of the noise power charge Qdrms(N, G), obtaining the function QdSN(N) by calculating the ratio of Qdint(N, G) and Qdrms(N, G), obtaining the constant gradient k from the function QdSN(N)=Qdint(N, G)/Qdrms(N, G)=k*N, and obtaining N.
    Type: Grant
    Filed: April 27, 2017
    Date of Patent: January 9, 2018
    Assignee: TARGET SYSTEMELEKTRONIK GMBH & CO. KG
    Inventor: Jürgen Stein