Patents Assigned to Tau Science Corporation
  • Patent number: 9537444
    Abstract: A method of quantum efficiency (QE) photovoltaic measurement is provided that includes coupling measurement electronics to a p-n junction of a Cell Under Test (CUT) that are capable of measuring a pulsed DC photocurrent. The measurement electronics output a response by the CUT to turning on and turning off the pulsed DC photocurrent that are digitized and analyzed for the magnitude that is representative of a conversion efficiency of the CUT to a wavelength of the DC photocurrent, where a measured decay time represents the p-n junction or the minority carrier lifetime. The CUT is exposed to the pulsed DC photocurrent, where signatures of the response to turning off and on to the pulsed DC photocurrent overlap, where a combined amplitude of the response is proportional to an efficiency of a production of photocarriers, where a value of a spectral response at a wavelength is determined.
    Type: Grant
    Filed: December 5, 2014
    Date of Patent: January 3, 2017
    Assignee: Tau Science Corporation
    Inventors: John M. Schmidt, Gregory S. Horner, Leonid A. Vasilyev, James E. Hudson, Kyle Lu
  • Patent number: 8299416
    Abstract: The present invention provides a high-speed Quantum Efficiency (QE) measurement device that includes at least one device under test (DUT), at least one conditioned light source with a less than 50 nm bandwidth, where a portion of the conditioned light source is monitored. Delivery optics are provided to direct the conditioned light to the DUT, a controller drives the conditioned light source in a time dependent operation, and at least one reflectance measurement assembly receives a portion of the conditioned light reflected from the DUT. A time-resolved measurement device includes a current measurement device and/or a voltage measurement device disposed to resolve a current and/or voltage generated in the DUT by each conditioned light source, where a sufficiently programmed computer determines and outputs a QE value for each DUT according to an incident intensity of at least one wavelength of from the conditioned light source and the time-resolved measurement.
    Type: Grant
    Filed: March 1, 2010
    Date of Patent: October 30, 2012
    Assignee: Tau Science Corporation
    Inventors: Mark A. Arbore, David L Klein, Leonid A. Vasilyev, John M. Schmidt, James E. Hudson, Gregory S. Horner
  • Patent number: 8278937
    Abstract: The current invention provides a shunt defect detection device that includes a device under test (DUT) that is fixedly held by a thermally isolating mount, a power source disposed to provide a directional bias condition to the DUT, a probe disposed to provide a localized power to the DUT from the power source, an emission detector disposed to measure a temporal emission from the DUT when in the directional bias condition, where the measured temporal emission is output as temporal data from the emission detector to a suitably programmed computer that uses the temporal data to determine a heating rate of the DUT and is disposed to estimate an overheat risk level of the DUT, where an output from the computer designates the DUT a pass status, an uncertain status, a fail status or a process to bin status according to the overheat risk level.
    Type: Grant
    Filed: February 8, 2010
    Date of Patent: October 2, 2012
    Assignee: Tau Science Corporation
    Inventors: Leonid A. Vasilyev, John M. Schmidt, James E. Hudson, Gregory S. Horner