Patents Assigned to TDAO Limited
  • Patent number: 6949171
    Abstract: This invention is a method of providing conductive tracks on a printed circuit including coating a substrate carrying printed tracks with an electro-plating solution with a tool which provides a first electrode of an electro-plating circuit and a second electrode provided by the tracks which are to be electroplated, and a tool suitable for use in electro-plating electrically conductive regions of a substrate, the tool including an absorptive member in which plating solution can be carried; a first electrode of an electro-plating circuit adapted to make electrical contact with plating solution carried by the absorptive member; and at least one tool second electrode electrically insulated from the first electrode and spaced from the absorptive member, the tool second electrode being so positioned that as the absorptive member is wiped across a surface of a substrate, the second electrode contactor can be wiped across the surface of the substrate to contact electrically conductive regions of the substrate to for
    Type: Grant
    Filed: September 25, 2002
    Date of Patent: September 27, 2005
    Assignee: TDAO Limited
    Inventor: John Michael Lowe
  • Patent number: 6939447
    Abstract: A method of electro-plating comprises providing an anode current for a target, applying an electron beam to the surface of a target and passing electrolyte between said target and anode, thereby to deposit material on said target. An electron beam gun directs an electron beam onto web while anode provides a current thereby depositing material on the web.
    Type: Grant
    Filed: February 14, 2003
    Date of Patent: September 6, 2005
    Assignee: TDAO Limited
    Inventor: John Michael Lowe
  • Patent number: 6916413
    Abstract: Electroplating station S has a head 1 with anode 2, to one side of which there is located an electrically neutral wall 3. The width of anode 2 is provided to accommodate the width of web 6. Serrations 9 are provided on the anode 2, especially in the area of top surface 8. A passageway 4 for electrolyte 5 is between anode 2 and wall 3. Mesh 11 is located at a throat section 12 of passageway 4 shortly before the start of the guide 7. In addition, mesh 13 is located further upstream in passageway 4 as an alternative and/or as an addition to mesh 11. Guide 7 of wall 3, serrations 9, and meshes 11 and 13 enhance and maximize the production of stream-wise vortices. These vortices cause a substantial increase in the ion flow, which overcomes boundary layers and results in additional deposition of copper onto the web 6.
    Type: Grant
    Filed: December 13, 2002
    Date of Patent: July 12, 2005
    Assignee: TDAO Limited
    Inventor: John Michael Lowe