Patents Assigned to TechMah Medical LLC
-
Patent number: 12115074Abstract: A method of constructing a patient-specific orthopedic implant comprising: (a) comparing a patient-specific abnormal bone model, derived from an actual anatomy of a patient's abnormal bone, with a reconstructed patient-specific bone model, also derived from the anatomy of the patient's bone, where the reconstructed patient-specific bone model reflects a normalized anatomy of the patient's bone, and where the patient-specific abnormal bone model reflects an actual anatomy of the patient's bone including at least one of a partial bone, a deformed bone, and a shattered bone, wherein the patient-specific abnormal bone model comprises at least one of a patient-specific abnormal point cloud and a patient-specific abnormal bone surface model, and wherein the reconstructed patient-specific bone model comprises at least one of a reconstructed patient-specific point cloud and a reconstructed patient-specific bone surface model; (b) optimizing one or more parameters for a patient-specific orthopedic implant to be mounteType: GrantFiled: December 22, 2020Date of Patent: October 15, 2024Assignee: TECHMAH MEDICAL LLCInventor: Mohamed R. Mahfouz
-
Patent number: 11946995Abstract: A method of calibrating an inertial measurement unit, the method comprising: (a) collecting data from the inertial measurement unit while stationary as a first step; (b) collecting data from the inertial measurement unit while repositioning the inertial measurement unit around three orthogonal axes of the inertial measurement unit as a second step; (c) calibrating a plurality of gyroscopes using the data collected during the first step and the second step; (d) calibrating a plurality of magnetometers using the data collected during the first step and the second step; (e) calibrating a plurality of accelerometers using the data collected during the first step and the second step; (f) where calibrating the plurality of magnetometers includes extracting parameters for distortion detection and using the extracted parameters to determine if magnetic distortion is present within a local field of the inertial measurement unit.Type: GrantFiled: August 15, 2022Date of Patent: April 2, 2024Assignee: TECHMAH MEDICAL LLCInventor: Mohamed R. Mahfouz
-
Patent number: 11826111Abstract: A method of tracking motion of a body part, the method comprising: (a) gathering motion data from a body part repositioned within a range of motion, the body part having mounted thereto a motion sensor; (b) gathering a plurality of radiographic images taken of the body part while the body part is in different positions within the range of motion, the plurality of radiographic images having the body part and the motion sensor within a field of view; and, (c) constructing a virtual three dimensional model of the body part from the plurality of radiographic images using a structure of the motion sensor identifiable within at least two of the plurality of radiographic images to calibrate the radiographic images.Type: GrantFiled: April 12, 2022Date of Patent: November 28, 2023Assignee: TECHMAH MEDICAL LLCInventor: Mohamed R. Mahfouz
-
Patent number: 11813049Abstract: A surgical navigation system comprising a signal receiver communicatively coupled to a primary processor, the primary processor programmed to utilize a sequential Monte Carlo algorithm to calculate changes in three dimensional position of an inertial measurement unit mounted to a surgical tool, the processor communicatively coupled to a first memory storing tool data unique to each of a plurality of surgical tools, and a second memory storing a model data sufficient to construct a three dimensional model of an anatomical feature, the primary processor communicatively coupled to a display providing visual feedback regarding the three dimensional position of the surgical tool with respect to the anatomical feature.Type: GrantFiled: April 29, 2019Date of Patent: November 14, 2023Assignee: TECHMAH MEDICAL LLCInventor: Mohamed Rashwan Mahfouz
-
Patent number: 11813165Abstract: A method of constructing a patient-specific orthopedic implant comprising: (a) comparing a patient-specific abnormal bone model, derived from an actual anatomy of a patient's abnormal bone, with a reconstructed patient-specific bone model, also derived from the anatomy of the patient's bone, where the reconstructed patient-specific bone model reflects a normalized anatomy of the patient's bone, and where the patient-specific abnormal bone model reflects an actual anatomy of the patient's bone including at least one of a partial bone, a deformed bone, and a shattered bone, wherein the patient-specific abnormal bone model comprises at least one of a patient-specific abnormal point cloud and a patient-specific abnormal bone surface model, and wherein the reconstructed patient-specific bone model comprises at least one of a reconstructed patient-specific point cloud and a reconstructed patient-specific bone surface model; (b) optimizing one or more parameters for a patient-specific orthopedic implant to be mounteType: GrantFiled: December 22, 2020Date of Patent: November 14, 2023Assignee: TECHMAH MEDICAL LLCInventor: Mohamed R. Mahfouz
-
Publication number: 20230285165Abstract: A tibial component placement guide for use in a knee arthroplasty procedure involving a knee joint comprising a tibia, a patella, and a femur, the tibial component placement guide comprising an overlay configured to be overlaid a resected tibia that typifies at least one of a shape and an outline of the resected tibia, the overlay including at least one of an indicia and an opening indicative of at least one of an orientation and a position of a presurgical kinematic axis of at least one of the femur and the patella.Type: ApplicationFiled: April 26, 2021Publication date: September 14, 2023Applicant: TechMah Medical, LLCInventor: Mohamed R. Mahfouz
-
Patent number: 11744650Abstract: A method of navigating a cutting instrument, via a computer system, the method comprising: (a) mounting a patient-specific anatomical mapper (PAM) to a human in a single known location and orientation, where the PAM includes a surface precisely and correctly mating with a human surface correctly in only a single location and orientation; (b) mounting a reference inertial measurement unit (IMU) to the human; (c) operatively coupling a guide to the PAM, where the guide includes an instrument inertial measurement unit (IMU) and at least one of a cutting slot and a pin orifice; (d) outputting data from the reference IMU and the instrument IMU indicative of changes in position and orientation of the guide with respect to the human; (e) repositioning the guide with respect to the human to a position and an orientation consistent with a plan for carrying out at least one of a cut and pin placement; and, (f) visually displaying feedback concerning the position and orientation of the guide with respect to the human usType: GrantFiled: February 17, 2021Date of Patent: September 5, 2023Assignee: TECHMAH MEDICAL LLCInventor: Mohamed R. Mahfouz
-
Patent number: 11723724Abstract: A method of designing an orthopedic implant comprising: (a) iteratively evaluating possible shapes of a dynamic orthopedic implant using actual anatomical shape considerations and kinematic shape considerations; and, (b) selecting a dynamic orthopedic implant shape from one of the possible shapes, where the dynamic orthopedic implant shape selected satisfies predetermined kinematic and anatomical constraints.Type: GrantFiled: September 16, 2020Date of Patent: August 15, 2023Assignee: TECHMAH MEDICAL LLCInventor: Mohamed R. Mahfouz
-
Patent number: 11638608Abstract: A method of creating a mass-customized femoral bone base plate comprising: (i) establishing anatomical landmarks across a plurality of bone models of a statistical atlas; (ii) establishing instrument landmarks across the plurality of bone models of the statistical atlas; (iii) establishing definitions for a reference plane calculation across the plurality of bone models of the statistical atlas, where the reference plane represents a boundary of a prosthetic implant; (iv) establishing an attachment site for a mass-customized femoral bone base plate using the anatomical landmarks, the instrument landmarks, and the reference plane; and, (v) fabricating the mass-customized femoral bone base plate configured to be attached to a femur, where the attachment sites of the mass-customized femoral bone base plate are predetermined to avoid impingement with the prosthetic implant when implanted.Type: GrantFiled: April 12, 2019Date of Patent: May 2, 2023Assignee: TECHMAH MEDICAL LLCInventor: Mohamed R. Mahfouz
-
Patent number: 11435425Abstract: A method of calibrating an inertial measurement unit, the method comprising: (a) collecting data from the inertial measurement unit while stationary as a first step; (b) collecting data from the inertial measurement unit while repositioning the inertial measurement unit around three orthogonal axes of the inertial measurement unit as a second step; (c) calibrating a plurality of gyroscopes using the data collected during the first step and the second step; (d) calibrating a plurality of magnetometers using the data collected during the first step and the second step; (e) calibrating a plurality of accelerometers using the data collected during the first step and the second step; (f) where calibrating the plurality of magnetometers includes extracting parameters for distortion detection and using the extracted parameters to determine if magnetic distortion is present within a local field of the inertial measurement unit.Type: GrantFiled: September 16, 2020Date of Patent: September 6, 2022Assignee: TECHMAH MEDICAL LLCInventor: Mohamed R. Mahfouz
-
Publication number: 20220183856Abstract: A tibial component placement guide for use in a knee arthroplasty procedure involving a knee joint comprising a tibia, a patella, and a femur, the tibial component placement guide comprising an overlay configured to be overlaid a resected tibia that typifies at least one of a shape and an outline of the resected tibia, the overlay including at least one of an indicia and an opening indicative of at least one of an orientation and a position of a presurgical kinematic axis of at least one of the femur and the patella.Type: ApplicationFiled: April 26, 2021Publication date: June 16, 2022Applicant: TechMah Medical, LLCInventor: Mohamed R. Mahfouz
-
Patent number: 11331151Abstract: A method of tracking motion of a body part, the method comprising: (a) gathering motion data from a body part repositioned within a range of motion, the body part having mounted thereto a motion sensor; (b) gathering a plurality of radiographic images taken of the body part while the body part is in different positions within the range of motion, the plurality of radiographic images having the body part and the motion sensor within a field of view; and, (c) constructing a virtual three dimensional model of the body part from the plurality of radiographic images using a structure of the motion sensor identifiable within at least two of the plurality of radiographic images to calibrate the radiographic images.Type: GrantFiled: June 19, 2018Date of Patent: May 17, 2022Assignee: TECHMAH MEDICAL LLCInventor: Mohamed R. Mahfouz
-
Patent number: 11284945Abstract: A method of navigating a cutting instrument, via a computer system, the method comprising: (a) mounting a patient-specific anatomical mapper (PAM) to a human in a single known location and orientation, where the PAM includes a surface precisely and correctly mating with a human surface correctly in only a single location and orientation; (b) mounting a reference inertial measurement unit (IMU) to the human; (c) operatively coupling a guide to the PAM, where the guide includes an instrument inertial measurement unit (IMU) and at least one of a cutting slot and a pin orifice; (d) outputting data from the reference IMU and the instrument IMU indicative of changes in position and orientation of the guide with respect to the human; (e) repositioning the guide with respect to the human to a position and an orientation consistent with a plan for carrying out at least one of a cut and pin placement; and, (f) visually displaying feedback concerning the position and orientation of the guide with respect to the human usType: GrantFiled: June 20, 2019Date of Patent: March 29, 2022Assignee: TECHMAH MEDICAL LLCInventor: Mohamed R. Mahfouz
-
Publication number: 20210236210Abstract: A method of navigating a cutting instrument, via a computer system, the method comprising: (a) mounting a patient-specific anatomical mapper (PAM) to a human in a single known location and orientation, where the PAM includes a surface precisely and correctly mating with a human surface correctly in only a single location and orientation; (b) mounting a reference inertial measurement unit (IMU) to the human; (c) operatively coupling a guide to the PAM, where the guide includes an instrument inertial measurement unit (IMU) and at least one of a cutting slot and a pin orifice; (d) outputting data from the reference IMU and the instrument IMU indicative of changes in position and orientation of the guide with respect to the human; (e) repositioning the guide with respect to the human to a position and an orientation consistent with a plan for carrying out at least one of a cut and pin placement; and, (f) visually displaying feedback concerning the position and orientation of the guide with respect to the human usType: ApplicationFiled: February 17, 2021Publication date: August 5, 2021Applicant: TechMah Medical LLCInventor: Mohamed R. Mahfouz
-
Patent number: 11045330Abstract: A tibial component placement guide for use in a knee arthroplasty procedure involving a knee joint comprising a tibia, a patella, and a femur, the guide comprising an overlay configured to be overlaid a resected tibia, the overlay including at least one of an indicia and an opening indicative of at least one of an orientation and a position of at least one of a first axis of the femur, a second axis of the femur, and a first axis of the patella.Type: GrantFiled: June 20, 2017Date of Patent: June 29, 2021Assignee: TechMah Medical, LLCInventor: Mohamed R. Mahfouz
-
Publication number: 20210169367Abstract: A surgical navigation system comprising a signal receiver communicatively coupled to a primary processor, the primary processor programmed to utilize a sequential Monte Carlo algorithm to calculate changes in three dimensional position of an inertial measurement unit mounted to a surgical tool, the processor communicatively coupled to a first memory storing tool data unique to each of a plurality of surgical tools, and a second memory storing a model data sufficient to construct a three dimensional model of an anatomical feature, the primary processor communicatively coupled to a display providing visual feedback regarding the three dimensional position of the surgical tool with respect to the anatomical feature.Type: ApplicationFiled: February 19, 2021Publication date: June 10, 2021Applicant: TechMah Medical LLCInventor: Mohamed Rashwan Mahfouz
-
Publication number: 20210106427Abstract: A method of constructing a patient-specific orthopedic implant comprising: (a) comparing a patient-specific abnormal bone model, derived from an actual anatomy of a patient's abnormal bone, with a reconstructed patient-specific bone model, also derived from the anatomy of the patient's bone, where the reconstructed patient-specific bone model reflects a normalized anatomy of the patient's bone, and where the patient-specific abnormal bone model reflects an actual anatomy of the patient's bone including at least one of a partial bone, a deformed bone, and a shattered bone, wherein the patient-specific abnormal bone model comprises at least one of a patient-specific abnormal point cloud and a patient-specific abnormal bone surface model, and wherein the reconstructed patient-specific bone model comprises at least one of a reconstructed patient-specific point cloud and a reconstructed patient-specific bone surface model; (b) optimizing one or more parameters for a patient-specific orthopedic implant to be mounteType: ApplicationFiled: December 22, 2020Publication date: April 15, 2021Applicant: TechMah Medical LLCInventor: Mohamed R. Mahfouz
-
Publication number: 20210106428Abstract: A method of constructing a patient-specific orthopedic implant comprising: (a) comparing a patient-specific abnormal bone model, derived from an actual anatomy of a patient's abnormal bone, with a reconstructed patient-specific bone model, also derived from the anatomy of the patient's bone, where the reconstructed patient-specific bone model reflects a normalized anatomy of the patient's bone, and where the patient-specific abnormal bone model reflects an actual anatomy of the patient's bone including at least one of a partial bone, a deformed bone, and a shattered bone, wherein the patient-specific abnormal bone model comprises at least one of a patient-specific abnormal point cloud and a patient-specific abnormal bone surface model, and wherein the reconstructed patient-specific bone model comprises at least one of a reconstructed patient-specific point cloud and a reconstructed patient-specific bone surface model; (b) optimizing one or more parameters for a patient-specific orthopedic implant to be mounteType: ApplicationFiled: December 22, 2020Publication date: April 15, 2021Applicant: TechMah Medical LLCInventor: Mohamed R. Mahfouz
-
Patent number: 10939966Abstract: A method of navigating a cutting instrument, via a computer system, the method comprising: (a) mounting a patient-specific anatomical mapper (PAM) to a human in a single known location and orientation, where the PAM includes a surface precisely and correctly mating with a human surface correctly in only a single location and orientation; (b) mounting a reference inertial measurement unit (IMU) to the human; (c) operatively coupling a guide to the PAM, where the guide includes an instrument inertial measurement unit (IMU) and at least one of a cutting slot and a pin orifice; (d) outputting data from the reference IMU and the instrument IMU indicative of changes in position and orientation of the guide with respect to the human; (e) repositioning the guide with respect to the human to a position and an orientation consistent with a plan for carrying out at least one of a cut and pin placement; and, (f) visually displaying feedback concerning the position and orientation of the guide with respect to the human usType: GrantFiled: September 10, 2020Date of Patent: March 9, 2021Assignee: TechMah Medical LLCInventor: Mohamed R. Mahfouz
-
Patent number: 10940021Abstract: A method of navigating a cutting instrument, via a computer system, the method comprising: (a) mounting a patient-spe-cific anatomical mapper (PAM) to a human in a single known location and orientation, where the PAM includes a surface precisely and correctly mating with a human surface correctly in only a single location and orientation; (b) mounting a reference inertial measurement unit (IMU) to the human; (c) operatively coupling a guide to the PAM, where the guide includes an instrument inertial measurement unit (IMU) and at least one of a cutting slot and a pin orifice; (d) outputting data from the reference IMU and the instrument IMU indicative of changes in position and orientation of the guide with respect to the human; (e) repositioning the guide with respect to the human to a position and an orientation consistent with a plan for carrying out at least one of a cut and pin placement; and, (f) visually displaying feedback concerning the position and orientation of the guide with respect to the human uType: GrantFiled: June 20, 2019Date of Patent: March 9, 2021Assignee: TechMah Medical LLCInventor: Mohamed R. Mahfouz