Patents Assigned to Technip France
  • Patent number: 11959639
    Abstract: The invention is directed to a method for reducing NOx emission from an industrial process furnace comprising a firebox containing a burner and a tube, which method comprises subjecting an oxidant gas and/or a fuel gas (1) to humidification, thereby obtaining a humidified gas; and pre-heating the humidified gas with an external waste heat stream (20) before feeding the gas to the burner.
    Type: Grant
    Filed: September 5, 2017
    Date of Patent: April 16, 2024
    Assignee: TECHNIP FRANCE
    Inventors: Izaak Jacobus Risseeuw, Johannes Antonie de Jager, Jelle-Gerard Wijnja
  • Patent number: 11952870
    Abstract: The method comprises supplying, at a construction site, of a functional module comprising a hybrid cooler; verifying onsite the exploitation of the equipment of the functional module; mounting the functional module on a support structure; moving the structure to an exploitation site on the expanse of water. The verification involves passing a flow to be cooled through the air cooler of the hybrid cooler, the flow being cooled exclusively by a flow of air circulating through the air cooler of the hybrid cooler. The exploitation of hydrocarbons on the expanse of water involves the passage of a flow to be cooled through the water cooler of the hybrid cooling system, the flow being cooled by heat exchange with water taken from the expanse of water circulating through the water cooler.
    Type: Grant
    Filed: May 21, 2019
    Date of Patent: April 9, 2024
    Assignee: TECHNIP FRANCE
    Inventors: Benoit Laflotte, Sylvain Vovard, Dominique Claude Jean Gadelle
  • Patent number: 11920098
    Abstract: The method includes cooling and liquefying a feed gas stream, separating a stream obtained from the feed gas stream, and recovering a treated gas stream and a natural gas liquid stream. The method further includes compressing the treated gas stream in order to form a compressed treated gas stream, and fractionating the natural gas liquid stream into a plurality of hydrocarbon fractions (28, 30, 32, 33). The method additionally includes withdrawing from the compressed treated gas stream, of a recycle stream, and reintroducing the recycle stream without cooling into the feed gas stream, into the cooled feed gas stream, or into a stream obtained from the cooled feed gas stream upstream of an expander.
    Type: Grant
    Filed: November 15, 2019
    Date of Patent: March 5, 2024
    Assignee: TECHNIP FRANCE
    Inventors: Guillaume Le Ridant, Benoit Laflotte
  • Patent number: 11913715
    Abstract: The installation (10) comprises: —at least one air-cooled heat exchanger (22), the air-cooled heat exchanger (22) comprising a tube bundle capable of accepting a flow (24) that is to be cooled, and a fan capable of causing a flow of air to circulate across the bundle of tubes; —a water spraying assembly (26). The desalination assembly (20) comprises a salt water pickup (100) in the expanse of water (12), the desalination assembly (20) being coupled downstream to the water-spraying assembly (26). The water spraying assembly (26) comprises at least one spray nozzle opening into the bundle of tubes, the or each spray nozzle being directed towards the tubes of the tube bundle so as to spray liquid demineralised water coming from the desalination assembly (20) into contact with the tubes of the tube bundle.
    Type: Grant
    Filed: March 15, 2018
    Date of Patent: February 27, 2024
    Assignee: TECHNIP FRANCE
    Inventors: Pierre Berthelot, Philip Hagyard
  • Publication number: 20230415854
    Abstract: The present disclosure provides a system and method for monitoring a floating vessel hull mooring system by determining one or more hull rotational motions of yaw, roll, and/or pitch that do not require independent knowledge of environmental conditions. The hull rotational motion of a secure and intact mooring system can be calculated and/or established experientially over time by measuring movement of the hull to characterize the hull rotational motion at given geographical positions. A compromised mooring system will result in different hull rotational motion of at least one of yaw, roll, and/or pitch. By monitoring the hull rotational motion for a given geographical position to be compared to the theoretical values (and/or previous recorded values), it is then possible to assess that at least a portion of the mooring system has been compromised and in at some embodiment indicate which portion of the mooring system has been compromised.
    Type: Application
    Filed: July 28, 2023
    Publication date: December 28, 2023
    Applicant: TECHNIP FRANCE
    Inventors: Nicolas TCHERNIGUIN, Djoni Eka SIDARTA, Johyun KYOUNG, Ho Joon LIM
  • Publication number: 20230039329
    Abstract: The disclosure provides a method and system to monitor and advise the status of a group of floating platforms, such as offshore floating wind platforms, by using a floating platform's motion in the group and detect one or more anomalies to identify one or more disorders (including irregularities) in the group. Input for this method can include information of wind speed and direction and orientations of the wind turbine nacelles. The orientation of the platform can complement the orientation of a wind turbine nacelle on the platform in case the platform is equipped with a turret. Disorders include, but not limited to, mooring line failure, shifts of a drag anchor, other issues with the mooring system components such as fairleads, issues with the ballasting configuration of the floater, issues with the turret (if any), issues with the swivel of the nacelle, issues with the rotor, and issues with the blades.
    Type: Application
    Filed: August 9, 2021
    Publication date: February 9, 2023
    Applicant: TECHNIP FRANCE
    Inventors: Djoni Eka SIDARTA, Nicolas TCHERNIGUIN
  • Patent number: 11401221
    Abstract: A method for producing a stream of propylene and associated facility are described. The method includes: an introduction of a feed cut rich in C4 and/or C5 hydrocarbons, and at least one cut rich in ethylene into a metathesis reactor; an introduction of a metathesis product in a deethylenizer; a production of an overhead stream rich in ethylene and a feed stream; an introduction of the feed stream into a depropylenizer and recovery of a bottom stream containing C4+ hydrocarbons; a recovery, from an overhead stream of the depropylenizer, of the propylene stream; a lateral withdrawal of a recycle stream and return of the recycle stream to the metathesis reactor; a lateral draw-off, in the depropylenizer, of a purge rich in C4 paraffinic hydrocarbons and/or rich in isobutene.
    Type: Grant
    Filed: May 23, 2019
    Date of Patent: August 2, 2022
    Assignee: TECHNIP FRANCE
    Inventors: Véronique Reich, Bruno Destour
  • Patent number: 11315015
    Abstract: The present invention provides a system and method of side-stepping the need to retrain neural network model after initially trained using a simulator by comparing real-world data to data predicted by the simulator for the same inputs, and developing a mapping correlation that adjusts real world data toward the simulation data. Thus, the decision logic developed in the simulation-trained model is preserved and continues to operate in an altered reality. A threshold metric of similarity can be initially provided into the mapping algorithm, which automatically adjusts real world data to adjusted data corresponding to the simulation data for operating the neural network model when the metric of similarity between the real world data and the simulation data exceeds the threshold metric. Updated learning can continue as desired, working in the background as conditions are monitored.
    Type: Grant
    Filed: June 8, 2018
    Date of Patent: April 26, 2022
    Assignee: TECHNIP FRANCE
    Inventors: James Francis O'Sullivan, Djoni Eka Sidarta, Ho Joon Lim
  • Publication number: 20210339831
    Abstract: The present disclosure provides a system and method for monitoring a floating vessel hull mooring system by determining one or more hull rotational motions of yaw, roll, and/or pitch that do not require independent knowledge of environmental conditions. The hull rotational motion of a secure and intact mooring system can be calculated and/or established experientially over time by measuring movement of the hull to characterize the hull rotational motion at given geographical positions. A compromised mooring system will result in different hull rotational motion of at least one of yaw, roll, and/or pitch. By monitoring the hull rotational motion for a given geographical position to be compared to the theoretical values (and/or previous recorded values), it is then possible to assess that at least a portion of the mooring system has been compromised and in at some embodiment indicate which portion of the mooring system has been compromised.
    Type: Application
    Filed: October 21, 2019
    Publication date: November 4, 2021
    Applicant: TECHNIP FRANCE
    Inventors: Nicolas TCHERNIGUIN, Djoni Eka SIDARTA, Johyun KYOUNG, Ho Joon LIM
  • Patent number: 11162034
    Abstract: A cracking furnace includes a pyrolysis tube 1 for carrying a flow of fluid, the pyrolysis tube including a radially inner body 3 and a radially outer wall 2 which together define an annular flow passage 5, wherein at least one of the radially inner body and the radially outer wall has a centre line which extends helically in a longitudinal direction of the pyrolysis tube, so as to promote rotation of the fluid as it flows along the pyrolysis tube.
    Type: Grant
    Filed: June 30, 2017
    Date of Patent: November 2, 2021
    Assignee: TECHNIP FRANCE S.A.S.
    Inventors: Peter Oud, Esmaeil Mahmoudi Namarvar, Marco Van Goethem
  • Patent number: 11125506
    Abstract: A tube heat exchanger extending in a vertical direction, comprising: a first chamber including a lower portion provided with at least one intake inlet for a diphasic fluid including a liquid and a first vapor containing a mist; an upper portion; and a first recovery member passed through by the first vapor and recovering the mist in liquid form, the first vapor next arriving in the upper portion, a central chamber forming liquid films running over the tubes and vaporizing at least partially to produce a second vapor, the tubes being traveled inwardly by a fluid hotter than the diphasic fluid, and a second chamber receiving the first vapor and the second vapor to form a third vapor, and including an outlet for the non-vaporized liquid and an outlet for the third vapor, the first chamber and the second chamber together forming a volume surrounding the central chamber around the vertical direction.
    Type: Grant
    Filed: July 26, 2017
    Date of Patent: September 21, 2021
    Assignee: TECHNIP FRANCE
    Inventor: Nicolas Rambure
  • Patent number: 11117110
    Abstract: The invention is directed to a method for heating a process gas in a top or bottom fired reformer, a method for improving the temperature spread over a top or bottom fired reformer, and to a top or bottom fired reformer wherein these methods can applied. This can be achieved by the lane flow rate of at least one outer tube lane being different from the lane flow rate of at least one inner tube lane.
    Type: Grant
    Filed: February 3, 2017
    Date of Patent: September 14, 2021
    Assignee: Technip France
    Inventors: Roland Van Uffelen, Stephane Walspurger
  • Patent number: 11067274
    Abstract: The present disclosure relates to a flue gas exhaust system for an industrial furnace, especially a steam reforming furnace. The flue gas exhaust system comprises a stack having an inlet opening for introducing flue gas into the stack and an outlet opening for exhausting flue gas. The inlet opening of the stack is in fluid connection to an outlet of a heat recovery system of the industrial furnace. Further, the fluid connection between said heat recovery system outlet and said stack inlet opening comprises a transition flue gas duct that at least partly embraces a part of the stack.
    Type: Grant
    Filed: July 6, 2017
    Date of Patent: July 20, 2021
    Assignee: TECHNIP FRANCE
    Inventor: Jacobus Robbers
  • Patent number: 11047512
    Abstract: The present invention relates to a flexible pipe comprising a mechanical reinforcement element (4) and a pressure sheath. Mechanical reinforcement element (4) comprises at least one metallic tensile armour layer (6) and at least one composite tensile armour layer (7). Composite tensile armour layer (7) is arranged outside metallic tensile armour layer (6). Separation means (8) are provided to separate composite tensile armours (7), while maintaining a radial clearance and a circumferential clearance for composite tensile armours (7).
    Type: Grant
    Filed: March 13, 2018
    Date of Patent: June 29, 2021
    Assignees: IFP Energies nouvelles, TECHNIP FRANCE
    Inventors: Vincent Le Corre, Michael Martinez, Julien Maurice, Alexandre Damiens, Antoine Felix-Henry
  • Patent number: 11029096
    Abstract: Heat exchanger for quenching reaction gas comprising—a coolable double-wall tube including an inner tubular wall and an outer tubular wall, wherein said inner tubular wall is configured to convey said reaction gas to be quenched, and wherein a space defined by said inner tubular wall and said outer tubular wall is configured to convey a coolant; —a tubular connection member having a bifurcating longitudinal cross-section comprising an exterior wall section and an interior wall section defining an intermediate space filled with refractory filler material, wherein a converging end of said connection member is arranged to be in connection with an uncoolable reaction gas conveying pipe, wherein said exterior wall section is connected with said outer tubular wall of said coolable double-wall tube, wherein an axial gap is left between said interior wall section and said inner tubular wall of said coolable double-wall tube.
    Type: Grant
    Filed: July 5, 2017
    Date of Patent: June 8, 2021
    Assignee: TECHNIP FRANCE
    Inventors: Esmaeil Mahmoudi Namarvar, Peter Oud
  • Patent number: 10995910
    Abstract: The process comprises the following steps: mixing a gaseous stream of flash gas and a gaseous stream of boil-off gas to form a mixed gaseous flow; compressing the mixed gaseous flow in at least one compression apparatus to form a flow of compressed combustible gas; withdrawing a bypass flow in the flow of compressed combustible gas; compressing the bypass flow in at least one downstream compressor; cooling and expanding the compressed bypass flow; reheating at least a first stream derived from the expanded bypass flow in at least one downstream heat exchanger, reintroducing the first reheated stream in the mixed gaseous flow upstream from the compression apparatus.
    Type: Grant
    Filed: July 12, 2016
    Date of Patent: May 4, 2021
    Assignee: TECHNIP FRANCE
    Inventors: Sylvain Vovard, Vincent Tirilly
  • Publication number: 20210008828
    Abstract: The present invention pertains to a pipe comprising at least one layer at least comprising, preferably consisting essentially of (or being made of), a tetrafluoroethylene (TFE) copolymer comprising from 0.8% to 2.5% by weight of recurring units derived from at least one perfluorinated alkyl vinyl ether having formula (I) here below: CF2?CF—O—Rf (I) wherein Rf is a linear or branched C3-C5 perfluorinated alkyl group or a linear or branched C3-C12 perfluorinated oxyalkyl group comprising one or more ether oxygen atoms, said TFE copolymer having a melt flow index comprised between 0.5 and 6.0 g/10 min, as measured according to ASTM D1238 at 372° C. under a load of 5 Kg [polymer (F)]. The invention also pertains to use of said pipe in heat exchangers and in downhole operations including drilling operations.
    Type: Application
    Filed: July 27, 2020
    Publication date: January 14, 2021
    Applicants: SOLVAY SPECIALTY POLYMERS ITALY S.P.A., TECHNIP FRANCE
    Inventors: Pasqua Colaianna, Giambattista Besana, Marco Mirenda, Nicasio Messina
  • Publication number: 20210008827
    Abstract: The present invention pertains to a pipe comprising at least one layer at least comprising, preferably consisting essentially of (or being made of), a tetrafluoroethylene (TFE) copolymer comprising from 0.8% to 2.5% by weight of recurring units derived from at least one perfluorinated alkyl vinyl ether having formula (I) here below: CF2=CF—O—Rf (I) wherein Rf is a linear or branched C3-C5 perfluorinated alkyl group or a linear or branched C3-C12 perfluorinated oxyalkyl group comprising one or more ether oxygen atoms, said TFE copolymer having a melt flow index comprised between 0.5 and 6.0 g/10 min, as measured according to ASTM D1238 at 372° C. under a load of 5 Kg [polymer (F)]. The invention also pertains to use of said pipe in heat exchangers and in downhole operations including drilling operations.
    Type: Application
    Filed: July 24, 2020
    Publication date: January 14, 2021
    Applicants: SOLVAY SPECIALTY POLYMERS ITALY S.P.A., TECHNIP FRANCE
    Inventors: Pasqua Colaianna, Giambattista Besana, Marco Mirenda, Nicasio Messina
  • Patent number: 10835981
    Abstract: A method for automated circumferential welding of a workpiece by means of at least one welding device, including: (a) determining a further weld path for a further weld to be welded on the workpiece, the further weld extending from a start point, via a downstream part to a stop point, (b) determining first welding parameters associated with the further weld and adapted to weld the further weld on the workpiece, the first welding parameters are adapted to transfer a first level of heat to the workpiece, (c) identifying at least one overlap area in the further weld path between the downstream part and the start point of the further weld or between the further weld and a start or stop point of a previous weld, (d) determining a boost area, the boost area including the at least one overlap area, (e) determining boost welding parameters associated with the boost area and adapted to weld the further weld in the boost area, the boost welding parameters are adapted to transfer a second level of heat to the workpiece,
    Type: Grant
    Filed: December 21, 2017
    Date of Patent: November 17, 2020
    Assignee: TECHNIP FRANCE
    Inventors: Joel Troyer, Gaspard Brisac
  • Patent number: 10782073
    Abstract: A waste heat boiler system for cooling a process gas, including a first shell-and-tube heat exchanger for cooling relatively hot gas down to relatively warm gas, an intermediate chamber for receiving gas, cooled down to relatively warm gas, coming out of tubes of the first heat exchanger, and a second shell-and-tube heat exchanger for cooling relatively warm gas further down to relatively cool gas. The intermediate chamber is provided with an outlet fluidly connected to a bypass channel for allowing a part of the relatively warm gas to bypass tubes of the second heat exchanger. The bypass channel and tubes of the second heat exchanger are both fluidly connected with a mixing chamber for mixing together relatively warm gas flowed from the intermediate chamber into the mixing chamber via the bypass channel and relatively cool gas come out of the tubes of the second heat exchanger.
    Type: Grant
    Filed: February 26, 2016
    Date of Patent: September 22, 2020
    Assignee: TECHNIP FRANCE
    Inventors: Jacobus Robbers, Ivan Radosevic, Hendrik Arie De Vrij