Abstract: The present invention relates to a method for treating a cracked stream stemming from a fluid catalytic cracker unit (FCCU) in order to improve propylene recovery. The present invention also relates to the corresponding installation to implement the method.
Abstract: The present disclosure provides a system and a method for efficiently converting the structure of a drilling floating platform into a structure for a production floating platform. A riser support module can be coupled to a topsides of the drilling floating platform and suspended below a moonpool or other opening through the topsides to support risers and their respective riser pull tubes, if any. The riser support module can be prebuilt and installed as a unit for example at a quayside.
Type:
Application
Filed:
June 22, 2016
Publication date:
December 28, 2017
Applicant:
TECHNIP FRANCE
Inventors:
Kostas F. LAMBRAKOS, Chenteh Alan YU, Johyun KYOUNG, Djoni Eka SIDARTA
Abstract: This method envisions cooling the supply flow in a first heat exchanger, separation in a first separation flask in order to produce a light upper flow and a heavy lower flow and dividing the light upper flow into a supply fraction of a dynamic pressure reduction turbine and a supply fraction of a first distillation column. A cooled reflux flow is formed from an effluent from a dynamic pressure reduction turbine, the portion of the effluent being cooled and at least partially liquefied in a heat exchanger. The cooled reflux flow is introduced from the heat exchanger into the first distillation column.
Abstract: A method for installation of an elongate element in a stretch of water, the method including reversible fastening of a connecting member (34) at a first end (16) of the elongate element (10); arranging the elongate element (10) in a substantially horizontal configuration; reversibly engaging the connecting member (34) in a retaining member (36); pivoting the elongate element (10) about a substantially horizontal axis to move the elongate element (10) into a substantially vertical configuration, while the connecting member (34) remains engaged in the retaining member (36); joint lowering of the retaining member (36), the connecting member (34) and the elongate element (10) in the stretch of water (12) with the help of a lowering line (152); detaching the connecting member (34) of the first end (16) of the elongate element (10), and joint raising of the retaining member (36) and the connecting member (34).
Abstract: This method comprises cooling the feed natural gas in a first heat exchanger and introducing the cooled, feed natural gas into a first separation flask. It comprises the dynamic expansion of a turbine supply flow in a first expansion turbine and introducing the expanded flow into a separation column. This method comprises removing, at the head of the separation column, a head flow rich in methane and removing a first recirculation flow from the compressed head flow rich in methane. The method comprises forming at least a second recirculation flow obtained from the head flow rich in methane downstream of the separation column and forming a dynamic expansion flow from the second recirculation flow.
Type:
Grant
Filed:
May 5, 2014
Date of Patent:
September 12, 2017
Assignee:
TECHNIP FRANCE
Inventors:
Henri Paradowski, Sandra Thiebault, Loic Barthe
Abstract: This device comprises a drum (42) to be driven in rotation about a central axis (B-B?), wherein the drum (42) defines a circumferential casing (50) for winding the elongate element around the central axis (B-B?), wherein the elongate element is intended to form at least one turn around the central axis (B-B?) on the circumferential casing (50). It comprises a mechanism (44) for driving the turn(s) of the elongate element along the circumferential casing (50). The drive mechanism (44) comprises at least one assembly (80) following movement of the turn in a direction of movement (D) forming a non-zero angle with the local axis of the turn, taken at a contact region of the turn on the movement assembly (80).
Abstract: A passive heave compensator comprising: a main hydraulic cylinder, including a moveable piston having a piston rod extendible through the main hydraulic cylinder and a piston head, a gas phase above the piston head, and at least one oil phase below the piston head separated by a boundary; an upper connection point associated with the main hydraulic cylinder and a lower connection point associated with the piston rod; and at least one accumulator, the or each accumulator having a moveable separator to divide the accumulator between a gas phase above the separator, and an oil phase below the separator, and the or each oil phase being in communication with an oil phase in the main hydraulic cylinder; characterized in that the main hydraulic cylinder further comprises a cylinder sleeve co-axial with the piston head to provide, in co-ordination with the piston head, the boundary between the gas phase and the at least one oil phase in the main hydraulic cylinder.
Type:
Grant
Filed:
February 5, 2014
Date of Patent:
August 1, 2017
Assignee:
TECHNIP FRANCE
Inventors:
David Cannell, Christophe Labbe, Eric Odigie, Shaun Riddell
Abstract: An underwater support device and an installation method for initiating the buckling of a section of rigid underwater pipe (16) deployed on a seabed (14). The device has a longitudinal support (22) capable of being installed between the seabed and the section of rigid underwater pipe (16) in a transverse direction, in such a way as to be able to locally detach the section of rigid underwater pipe (16) from the seabed (14) and allow the rigid underwater pipe (16) to be moved relative to said longitudinal support (22) in the direction of the longitudinal support. The device also has a link member (36) to secure the rigid underwater pipe (16) and the longitudinal support (22) in such a way as to be able to install said longitudinal support (22) on the seabed (14) by deploying the section of rigid pipe (26) on the seabed (14).
Type:
Grant
Filed:
March 21, 2014
Date of Patent:
July 18, 2017
Assignee:
TECHNIP FRANCE
Inventors:
Philippe Brunet, Sylvain Routeau, Bruno Jolin, Pascal Court
Abstract: The assembly includes a one group (40A to 40C) of hydraulic shock absorbers (42), each shock absorber (42) comprising a hydraulic jack comprising a cylinder designed to be supported by the first element (14), and a shock-absorbing member partially received in the cylinder. The shock-absorbing member has a head protruding outside the cylinder, the head being designed to come into contact with the second element during mounting of the second element on the first element (14). The shock-absorbing assembly (17) includes, for each group (40A to 40C) of shock absorbers (42), a fluid accumulator (44) connected to each cylinder of the group of shock absorbers (42), to allow a hydraulic fluid transfer between the different cylinders of the group of shock absorbers (42) during contact between each head and the second element.
Abstract: A passive heave compensator having: a main hydraulic cylinder, including a moveable piston having a piston rod extendible through the main hydraulic cylinder and a piston head to divide the main hydraulic cylinder between a gas phase above the piston head, and oil phase below the piston head; an upper connection point associated with the main hydraulic cylinder and a lower connection point associated with the piston rod; and an accumulator having a moveable separator to divide the accumulator between a gas phase above the separator, and an oil phase below the separator and being in communication with the oil phase in the main hydraulic cylinder; wherein an oil phase includes a magnetorheological substance, and that the passive heave compensator includes one or more electromagnetic controllers.
Type:
Grant
Filed:
February 5, 2014
Date of Patent:
July 11, 2017
Assignee:
TECHNIP FRANCE
Inventors:
David Cannell, Christophe Labbe, Eric Odigie, Shaun Riddell
Abstract: The present disclosure provides a system and method of monitoring a mooring system for a floating vessel using the time of the natural period independent of environmental conditions. The natural period can be calculated and/or established experientially over time by measuring movement of the vessel to establish the natural period at given geographical positions of a secure and intact mooring system. The natural period can be monitored based on the time to complete a natural period. A change in a mooring line stiffness, whether by a failure, stretching, a degradation of the mooring line integrity, or a significant displacement of the anchoring point, will be translated into a different natural period with a different time.
Type:
Grant
Filed:
July 20, 2015
Date of Patent:
June 6, 2017
Assignee:
TECHNIP FRANCE
Inventors:
James Francis O'Sullivan, Jr., Nicolas Tcherniguin
Abstract: A method of abandoning a pipeline being laid by a pipelaying vessel, wherein said pipeline is being held by a lay tower comprising a pipelaying and tensioning arrangement, comprising at least the steps of: (a) linking the end of the pipeline (103) to a flexible tubular handling conduit (102); (b) separately linking the pipeline to a lifting wire (104); and (c] lowering the pipeline towards the sea floor. In this way, the present invention, using the load capacity of both a flexible tubular handling conduit and a lifting wire for at least some of the pipeline lowering, is able to operate either more safely at existing depths, or at even greater depths to an ocean floor than before, or both.
Abstract: The present disclosure relates to a flexible submarine pipe comprising a plurality of layers, at least one layer of which comprises a polymer resin comprising at least one alumino-silicate or magnesium silicate nanotube chemically bonded to the polymer by a covalent bond, the method for preparing same and the use thereof for the transport of fluids, especially hydrocarbons.
Abstract: This element includes a plurality of longitudinal carbon fiber filaments (52) and a polymeric matrix (50) receiving the filaments (52) for binding them together, the matrix (50) forming a ribbon intended to be wound around a longitudinal body of the flexible line. The armor element (42) includes at least one optical fiber (54) received in the matrix (50), the optical fiber (54) having an elongation at break of more than 2%, as measured with the ASTM-D 885-03 standard.
Abstract: An umbilical for use in the offshore production of hydrocarbons, the umbilical comprising at least one electric cable, the electric cable comprising at least one electric conductor (18), and at least one electric conductor (18) comprising plurality of electric strands having interstices (15), wherein the interstices are filled with a metal-based material. In this way, there is provided an umbilical with a ‘void-free1 or completely gap-filled conductor construction which therefore prevents water or gas migration or transport along such a conductor.
Abstract: The method according to the invention comprises the separation of a feed stream (16) into a first fraction (60) and a second fraction (62) and the injection of at least part of the second fraction (62) into a second dynamic expansion turbine (46) to form a second expanded fraction (80). It comprises the cooling of the second expanded fraction (80) through heat exchange with at least part of the first headstream (84) coming from a first column (28) and the formation of a second feed stream (82) of the first column (28) from the second cooled expanded fraction.
Abstract: A method of laying a subsea pipeline from a reel, the pipeline having an in-line first locking member, the method having at least the steps of: (a) laying the pipeline under the water from the reel; (b) cutting the pipeline above the first locking member; (c) coupling the first locking member with a complementary second locking member; and (d) lowering the first and second locking members under the water. In this way, the pipeline already has located within it a suitable locking member for the abandoning operation, avoiding the need for a separate off-shore welding operation.
Abstract: The present disclosure provides a method for reducing ovality in pipe for joining to pipe components by using a plug coupled on an inside surface of the pipe and a sacrificial component coupled to the end of the pipe to establish a coupling interface. The plug, the sacrificial component, or a combination thereof assists in minimizing ovality changes during use of the pipe, particularly at the end of the pipe. When the pipe is to be coupled with a pipe component, the pipe and sacrificial component are separated at a different location than the coupling interface along the pipe in proximity to the plug. The plug is left coupled to the sacrificial component, and generally slidably engaged with the pipe. The plug and the sacrificial component can be removed from engagement with the pipe. The pipe and the pipe component can be coupled together.
Type:
Grant
Filed:
October 14, 2014
Date of Patent:
April 18, 2017
Assignee:
TECHNIP FRANCE
Inventors:
Laurent Frank Paupy, Fabien Anne, Mathieu Boisne, Eric Christopher Keith
Abstract: The present disclosure relates to a flexible tubular pipe (1) of the unbonded type and including, from the inside to the outside, an internal carcass (2), first and second polymeric sheaths (3, 4), at least one tensile armor layer (6, 7) and a polymeric sealing sheath (8) and also at each of its ends, a connecting endpiece (10) comprising i.a., a tubular sleeve (15). The tubular sleeve (15) of a first endpiece (10) includes means (30, 31, 32) for draining the gases from the gap (25) between the sheaths (3, 4) towards the outside of the pipe (1) and the tubular sleeve of the second endpiece (10) including means for draining the gases from the gap (25) between two sheaths (3, 4) towards the outside or towards the inside of the pipe (1).
Type:
Grant
Filed:
February 17, 2012
Date of Patent:
April 11, 2017
Assignee:
TECHNIP FRANCE
Inventors:
Frédéric Demanze, Antoine Felix-Henry, Thomas Epsztein, Patrice Jung, Jean-Christophe Bourget, Cécile Izarn
Abstract: A method of installing a plurality of pin piles into a seabed including at least the steps of: (a) lowering a pin pile apparatus comprising a first pin pile and an attached clump weight towards the seabed; (b) allowing the first pin pile to self-penetrate the seabed based on self-weight of the pin pile apparatus and the momentum from step (a) until the clump weight reaches the sea bed; (c) disconnecting the clump weight from the first pin pile; and (d) recovering the clump weight for use with a second pin pile and repeating steps (a)-(c). In this way, the pin piles are easily installed from their descent to the seabed with the clump weight, which can then be removed and applied to the next pin pile in an easy and repeatable operation without requiring a suction apparatus or hammer or drill.
Type:
Grant
Filed:
April 11, 2014
Date of Patent:
March 7, 2017
Assignee:
TECHNIP FRANCE
Inventors:
John Oliphant, Abiola Ojo, Alasdair Maconochie