Abstract: A quinacridone pigment composition contains quinacridone microparticles which have durability and spectral characteristics equivalent to those required for a magenta color of a dye. The quinacridone pigment composition contains at least one type of quinacridone microparticles, wherein a difference between the maximum transmittance (Tmax1) and the minimum transmittance (Tmin) is 80% or more in a transmission spectrum at 350 nm to 800 nm and the difference between the maximum and minimum transmittance is 30% or more in a transmission spectrum at 350 nm to 580 nm, or the difference between the maximum transmittance (Tmax1) and the minimum transmittance (Tmin) is 80% or more in a transmission spectrum at 350 nm to 800 nm and the wavelength (?max) at which the transmittance in a transmission spectrum at 350 nm to 500 nm becomes maximum is less than 430 nm. A method is provided for producing the quinacridone microparticles.
Abstract: Disclosed are: copper phthalocyanine pigments which each contain at least one kind of copper phthalocyanine microparticles that has high spectral characteristics and that is in a crystal form other than ?-form; and processes for the production of the copper phthalocyanine microparticles. Provided are: a copper phthalocyanine pigment which contains at least one kind of copper phthalocyanine microparticles that is in a crystal form other than ?-form and that exhibits, in a region of 380 nm to 780 nm, an absorption spectrum shape extremely similar to that of ?-form copper phthalocyanine microparticles; and a process for the production of the copper phthalocyanine microparticles.
Abstract: A method is provided for producing separated substances, particularly metal compounds, the dopant element amounts of which have been controlled by the use of an apparatus that processes fluid between the processing surfaces of a processing member that can be made to approach/separate and which rotate relative to each other. The substance to be separated is separated by mixing a raw material solution, wherein the substance to be separated is solubilized in a solvent, with the solvent for separation and with the dopant element or dopant element-containing substance solubilized in at least one solvent selected from the solvent of said raw material solution, said solvent for separation or a solvent other than that of said raw material solution or said solution for separation. Separated substances with controlled dopant element amounts are obtained by controlling the solubility of the dopant element or dopant element-containing substance in the solvent for separation.
Abstract: Equipment for treating a matter to be treated more stably and uniformly between approaching/receding treatment planes in a treatment section where at least one plane can rotate relatively to the other plane. Treatment is performed by introducing a first fluid containing a matter to be treated between the treatment planes, introducing a second fluid containing the matter to be treated between the treatment planes from a channel independent from the channel which introduced the first fluid and communicating with the space between the treatment planes and then mixing and stirring them between the treatment planes. The outlet portion of the channel introducing the second fluid to the space between the treatment planes is provided with a plurality of split channels.
Abstract: The surface of fine pigment particles is efficiently treated using low energy without causing a cost increase. Provided is a method of treating the surface of fine pigment particles, characterized by maintaining a small gap of 1 mm or narrower between two treating surfaces which are able to get close to and apart from each other and relatively rotate and using the gap between the two treating surfaces which is kept so narrow, as a passage for a fluid to be treated, thereby forming a thin film of the fluid to be treated (forced thin film). Fine pigment particles are formed in this thin-film fluid (forced thin film). The method is further characterized by modifying the surface of the formed fine pigment particles within the thin-film fluid (forced thin film).
Abstract: It is an object to provide a method for producing compound semiconductor particles in which monodisperse compound semiconductor particles can be prepared according to the intended object, clogging with products does not occur due to self-dischargeability, a large pressure is not necessary, and productivity is high. In producing compound semiconductor particles by separating and precipitating, in a fluid, semiconductor raw materials, the fluid is formed into a thin film fluid between two processing surfaces arranged so as to be able to approach to and separate from each other, at least one of which rotates relative to the other, and the semiconductor raw materials are separated and precipitated in the thin film fluid.
Abstract: The object of the present invention is to provide a method for producing a resin microparticle aqueous dispersion, which can produce monodisperse resin microparticles, does not cause clogging by a product, does not require a high pressure, and has ahighproductivity. Thus, providedisamethodforproducing a resin microparticle aqueous dispersion, wherein a fluid having at least one kind of resin dissolved in a solvent with which a resin is soluble and compatible and a fluid of an aqueous solvent join together in a thin film fluid formed between processing surfaces arranged opposite so as to be able to approach to and separate from each other, at least one of which rotates relative to the other, whereby resin microparticles are obtained in the thin film fluid by way of separation/emulsification.
Abstract: The present invention provides a method for producing nanoparticles, which comprises maintaining a minute space of 1 mm or less between two processing surfaces capable of approaching to and separating from each other and being rotating relative to each other, allowing the minute space maintained between the two processing surfaces to serve as a flow path of a processed fluid thereby forming a forced thin film of the processed fluid and separating nanoparticles in the forced thin film.