Patents Assigned to Technische Universitat Berlin
  • Publication number: 20250069849
    Abstract: Device for performing an interferometric measurement having a source for generating at least two coherent waves, an overlap apparatus for overlapping the at least two coherent waves and for generating an interference pattern, a measuring apparatus for measuring the interference pattern so as to form measured interference values, a disturbance apparatus for disturbing the interference pattern and an analyzer for analyzing the measured interference values, wherein the overlap apparatus comprises a passage region that is delimited at its edge by an edge element and is passed through by the at least two overlapping coherent waves, and comprises a beam-splitting element in the center region of the passage region.
    Type: Application
    Filed: August 19, 2024
    Publication date: February 27, 2025
    Applicant: Technische Universitat Berlin
    Inventor: Tolga WAGNER
  • Patent number: 12170168
    Abstract: An electrode suitable for constructing an electrochemical double layer capacitor and/or supercapacitor is provided that includes an electrode material a metal organic framework (MOF), wherein the MOF includes an inorganic building unit including metal atoms selected from group 1 to group 12 elements, and functional groups of organic linkers including oxygen (O) and one or more atoms selected from the group comprising phosphorus (P), arsenic (As), antimony (Sb), silicon (Si), selenium (Se) and bismuth (Bi). The functional groups of the organic linkers can include phosphonate, arsonate, phosphonic acid, phosphinic acid, arsonic acids and/or arsenic acids, monoester and/or diester forms thereof. Further, the metal atoms may be selected from zinc (Zn), cadmium (Cd), copper (Cu), cobalt (Co), nickel (Ni), gold (Au) and silver (Ag). The use of the MOF as a semiconductor in semiconductor applications, a semiconductive device, such as a photovoltaic cell, including the MOF are also provided.
    Type: Grant
    Filed: July 8, 2020
    Date of Patent: December 17, 2024
    Assignee: Technische Universitat Berlin
    Inventor: Gündog Yücesan
  • Publication number: 20240314006
    Abstract: Communication systems and methods in accordance with various embodiments of the invention utilize modulation on zeros. Carrier frequency offsets (CFO) can result in an unknown rotation of all zeros of a received signal's z-transform. Therefore, a binary MOCZ scheme (BMOCZ) can be utilized in which the modulated binary data is encoded using a cycling register code (e.g. CPC or ACPC), enabling receivers to determine cyclic shifts in the BMOCZ symbol resulting from a CFO. Receivers in accordance with several embodiments of the invention include decoders capable of decoding information bits from received discrete-time baseband signals by: estimating a timing offset for the received signal; determining a plurality of zeros of a z-transform of the received symbol; identifying zeros from the plurality of zeros that encode received bits by correcting fractional rotations resulting from the CFO; and decoding information bits based upon the received bits using a cycling register code.
    Type: Application
    Filed: October 20, 2023
    Publication date: September 19, 2024
    Applicants: California Institute of Technology, The Regents of the University of California, Technische Universität Berlin
    Inventors: Philipp Walk, Babak Hassibi, Peter Jung, Hamid Jafarkhani
  • Patent number: 12038720
    Abstract: The invention relates to a method for detecting a measured value (d?/dx, M).
    Type: Grant
    Filed: June 28, 2019
    Date of Patent: July 16, 2024
    Assignee: Technische Universität Berlin
    Inventors: Tolga Wagner, Michael Lehmann, Tore Niermann
  • Publication number: 20230399597
    Abstract: The 3D printing method disclosed here for the production of vascularized tissues and organs requires a droplet printer to produce photorealistic high-resolution prints and a device for applying non-directional or directional electromagnetic waves. The process uses a new type of capillary ink that crosslinks or undergoes a layer-forming reaction only in the edge area of the ink drops. Unbound capillary ink components are removed. The resulting cavities form a capillary network with diameters of up to approx. 10 ?m. Also disclosed is a novel printer table for supplying the printed tissue with medium during printing and a printer head supply unit for individually mixing the bio-inks from cell concentrate and various ink concentrates.
    Type: Application
    Filed: August 3, 2020
    Publication date: December 14, 2023
    Applicant: Technische Universität Berlin
    Inventors: Konstanze Schäfer, Andreas Salomon
  • Publication number: 20230379203
    Abstract: Systems and methods for transmitting data using various Modulation on Zeros schemes are described. In many embodiments, a communication system is utilized that includes a transmitter having a modulator that modulates a plurality of information bits to encode the bits in the zeros of the z-transform of a discrete-time baseband signal. In addition, the communication system includes a receiver having a decoder configured to decode a plurality of bits of information from the samples of a received signal by: determining a plurality of zeros of a z-transform of a received discrete-time baseband signal based upon samples from a received continuous-time signal, identifying zeros that encode the plurality of information bits, and outputting a plurality of decoded information bits based upon the identified zeros.
    Type: Application
    Filed: July 21, 2023
    Publication date: November 23, 2023
    Applicants: California Institute of Technology, Technische Universität Berlin
    Inventors: Philipp Walk, Babak Hassibi, Peter Jung
  • Patent number: 11799704
    Abstract: Communication systems and methods in accordance with various embodiments of the invention utilize modulation on zeros. Carrier frequency offsets (CFO) can result in an unknown rotation of all zeros of a received signal's z-transform. Therefore, a binary MOCZ scheme (BMOCZ) can be utilized in which the modulated binary data is encoded using a cycling register code (e.g. CPC or ACPC), enabling receivers to determine cyclic shifts in the BMOCZ symbol resulting from a CFO. Receivers in accordance with several embodiments of the invention include decoders capable of decoding information bits from received discrete-time baseband signals by: estimating a timing offset for the received signal; determining a plurality of zeros of a z-transform of the received symbol; identifying zeros from the plurality of zeros that encode received bits by correcting fractional rotations resulting from the CFO; and decoding information bits based upon the received bits using a cycling register code.
    Type: Grant
    Filed: May 5, 2022
    Date of Patent: October 24, 2023
    Assignees: California Institute of Technology, The Regents of the University of California, Technische Universität Berlin
    Inventors: Philipp Walk, Babak Hassibi, Peter Jung, Hamid Jafarkhani
  • Patent number: 11765008
    Abstract: Communication systems and methods in accordance with various embodiments of the invention utilize modulation on zeros. Carrier frequency offsets (CFO) can result in an unknown rotation of all zeros of a received signal's z-transform. Therefore, a binary MOCZ scheme (BMOCZ) can be utilized in which the modulated binary data is encoded using a cycling register code (e.g. CPC or ACPC), enabling receivers to determine cyclic shifts in the BMOCZ symbol resulting from a CFO. Receivers in accordance with several embodiments of the invention include decoders capable of decoding information bits from received discrete-time baseband signals by: estimating a timing offset for the received signal; determining a plurality of zeros of a z-transform of the received symbol; identifying zeros from the plurality of zeros that encode received bits by correcting fractional rotations resulting from the CFO; and decoding information bits based upon the received bits using a cycling register code.
    Type: Grant
    Filed: May 5, 2022
    Date of Patent: September 19, 2023
    Assignees: California Institute of Technology, The Regents of the University of California, Technische Universität Berlin
    Inventors: Philipp Walk, Babak Hassibi, Peter Jung, Hamid Jafarkhani
  • Patent number: 11711253
    Abstract: Systems and methods for transmitting data using various Modulation on Zeros schemes are described. In many embodiments, a communication system is utilized that includes a transmitter having a modulator that modulates a plurality of information bits to encode the bits in the zeros of the z-transform of a discrete-time baseband signal. In addition, the communication system includes a receiver having a decoder configured to decode a plurality of bits of information from the samples of a received signal by: determining a plurality of zeros of a z-transform of a received discrete-time baseband signal based upon samples from a received continuous-time signal, identifying zeros that encode the plurality of information bits, and outputting a plurality of decoded information bits based upon the identified zeros.
    Type: Grant
    Filed: June 2, 2022
    Date of Patent: July 25, 2023
    Assignees: California Institute of Technology, Technische Universität Berlin
    Inventors: Philipp Walk, Babak Hassibi, Peter Jung
  • Publication number: 20230128742
    Abstract: Systems and methods for transmitting data using various Modulation on Zeros schemes are described. In many embodiments, a communication system is utilized that includes a transmitter having a modulator that modulates a plurality of information bits to encode the bits in the zeros of the z-transform of a discrete-time baseband signal. In addition, the communication system includes a receiver having a decoder configured to decode a plurality of bits of information from the samples of a received signal by: determining a plurality of zeros of a z-transform of a received discrete-time baseband signal based upon samples from a received continuous-time signal, identifying zeros that encode the plurality of information bits, and outputting a plurality of decoded information bits based upon the identified zeros.
    Type: Application
    Filed: June 2, 2022
    Publication date: April 27, 2023
    Applicants: California Institute of Technology, Technische Universität Berlin
    Inventors: Philipp Walk, Babak Hassibi, Peter Jung
  • Publication number: 20230092437
    Abstract: Communication systems and methods in accordance with various embodiments of the invention utilize modulation on zeros. Carrier frequency offsets (CFO) can result in an unknown rotation of all zeros of a received signal's z-transform. Therefore, a binary MOCZ scheme (BMOCZ) can be utilized in which the modulated binary data is encoded using a cycling register code (e.g. CPC or ACPC), enabling receivers to determine cyclic shifts in the BMOCZ symbol resulting from a CFO. Receivers in accordance with several embodiments of the invention include decoders capable of decoding information bits from received discrete-time baseband signals by: estimating a timing offset for the received signal; determining a plurality of zeros of a z-transform of the received symbol; identifying zeros from. the plurality of zeros that encode received bits by correcting fractional rotations resulting from the CFO; and decoding information bits based upon the received bits using a cycling register code.
    Type: Application
    Filed: May 5, 2022
    Publication date: March 23, 2023
    Applicants: California Institute of Technology, The Regents of the University of California, Technische Universität Berlin
    Inventors: Philipp Walk, Babak Hassibi, Peter Jung, Hamid Jafarkhani
  • Patent number: 11525417
    Abstract: A method for controlling a combustion apparatus having a combustion state in which a parameter related to the combustion state reflects a chaotic behavior is provided. The method includes the steps of measuring the parameter and determining a time series of the parameter, shifting the time series by a variable time delay for determining a time-shifted signal, and forming a difference between the time-shifted signal and the time series for determining a time dependent first signal, so that a norm of the difference is lowest. A time dependent second signal is determined, wherein determining the time dependent second signal includes at least one of using a frequency of a desired oscillating combustion state, and shifting the time series by a set time delay. The first signal and the second signal are combined to determine a control signal. The control signal is used to influence the combustion apparatus.
    Type: Grant
    Filed: August 21, 2018
    Date of Patent: December 13, 2022
    Assignee: Technische Universität Berlin
    Inventors: Christian Oliver Paschereit, Aditya Saurabh, Lipika Kabiraj
  • Patent number: 11368196
    Abstract: Communication systems and methods in accordance with various embodiments of the invention utilize modulation on zeros. Carrier frequency offsets (CFO) can result in an unknown rotation of all zeros of a received signal's z-transform. Therefore, a binary MOCZ scheme (BMOCZ) can be utilized in which the modulated binary data is encoded using a cycling register code (e.g. CPC or ACPC), enabling receivers to determine cyclic shifts in the BMOCZ symbol resulting from a CFO. Receivers in accordance with several embodiments of the invention include decoders capable of decoding information bits from received discrete-time baseband signals by: estimating a timing offset for the received signal; determining a plurality of zeros of a z-transform of the received symbol; identifying zeros from the plurality of zeros that encode received bits by correcting fractional rotations resulting from the CFO; and decoding information bits based upon the received bits using a cycling register code.
    Type: Grant
    Filed: March 17, 2021
    Date of Patent: June 21, 2022
    Assignees: California Institute of Technology, The Regents of the University of California, Technische Universität Berlin
    Inventors: Philipp Walk, Babak Hassibi, Peter Jung, Hamid Jafarkhani
  • Publication number: 20220176405
    Abstract: A method for rendering material surfaces inert is provided. Exemplary surfaces include ceramic, metal or plastic surfaces. The method is accomplished with functionalized perfluorinated compounds for the formation of hyperhydrophobic structures on the surfaces to create inert surfaces. The inert surfaces produced or can be produced in this way have an extremely low surface energy, are resistant to deposits of substances or cells and have a very low coefficient of friction. Practical uses of the inert surfaces are also provided.
    Type: Application
    Filed: July 30, 2019
    Publication date: June 9, 2022
    Applicant: Technische Universität Berlin
    Inventors: Konstanze Schäfer, Astrid John-Müller, Stefanie Maike Krämer
  • Publication number: 20220171333
    Abstract: The invention relates to a method for detecting a measured value (d?/dx, M).
    Type: Application
    Filed: June 28, 2019
    Publication date: June 2, 2022
    Applicant: Technische Universität Berlin
    Inventors: Tolga WAGNER, Michael LEHMANN, Tore NIERMANN
  • Patent number: 11345910
    Abstract: Disclosed is a mussel adhesive protein including at least one photocaged 3,4-dihydroxyphenylalanine derivative residue including a protecting group on at least one hydroxyl residue of its catechol moiety. The photocaged 3,4-dihydroxyphenylalanine derivative residue replaces a naturally occurring amino acid and the protecting group can be cleaved from the 3,4-dihydroxyphenylalanine derivative residue by irradiation with UV light.
    Type: Grant
    Filed: March 26, 2018
    Date of Patent: May 31, 2022
    Assignee: Technische Universität Berlin
    Inventors: Matthias Hauf, Nediljko Budisa, Florian Richter, Tobias Baumann, Tobias Schneider
  • Publication number: 20220052728
    Abstract: Communication systems and methods in accordance with various embodiments of the invention utilize modulation on zeros. Carrier frequency offsets (CFO) can result in an unknown rotation of all zeros of a received signal's z-transform. Therefore, a binary MOCZ scheme (BMOCZ) can be utilized in which the modulated binary data is encoded using a cycling register code (e.g. CPC or ACPC), enabling receivers to determine cyclic shifts in the BMOCZ symbol resulting from a CFO. Receivers in accordance with several embodiments of the invention include decoders capable of decoding information bits from received discrete-time baseband signals by: estimating a timing offset for the received signal; determining a plurality of zeros of a z-transform of the received symbol; identifying zeros from the plurality of zeros that encode received bits by correcting fractional rotations resulting from the CFO; and decoding information bits based upon the received bits using a cycling register code.
    Type: Application
    Filed: March 17, 2021
    Publication date: February 17, 2022
    Applicants: California Institute of Technology, The Regents of the University of California, Technische Universität Berlin
    Inventors: Philipp Walk, Babak Hassibi, Peter Jung, Hamid Jafarkhani
  • Publication number: 20220052898
    Abstract: Systems and methods for transmitting data using various Modulation on Zeros schemes are described. In many embodiments, a communication system is utilized that includes a transmitter having a modulator that modulates a plurality of information bits to encode the bits in the zeros of the z-transform of a discrete-time baseband signal. In addition, the communication system includes a receiver having a decoder configured to decode a plurality of bits of information from the samples of a received signal by: determining a plurality of zeros of a z-transform of a received discrete-time baseband signal based upon samples from a received continuous-time signal, identifying zeros that encode the plurality of information bits, and outputting a plurality of decoded information bits based upon the identified zeros.
    Type: Application
    Filed: March 15, 2021
    Publication date: February 17, 2022
    Applicants: California Institute of Technology, Technische Universität Berlin
    Inventors: Philipp Walk, Babak Hassibi, Peter Jung
  • Publication number: 20220040919
    Abstract: In a first aspect, the invention refers to a printhead for the additive manufacturing of a fibre reinforced material, comprising a fibre reinforcement in a polymer matrix, comprising an infiltration unit for mixing and/or infiltrating a fibre roving with a molten polymer; at least one feeder for a polymer and/or a fibre roving to the infiltration unit; a heating element, at least for partially melting the polymer within the infiltration unit; at least one deflecting element within the infiltration unit and an outlet for the resulting fibre reinforced material from the infiltration unit, wherein the molten polymer can be guided within the infiltration unit with a polymer flow direction, from the feeder to the outlet, along a channel between the feeder and the outlet, and the fibre roving can be guided within the channel, by means of deflection, around the deflecting element, area by area, transversely to the polymer flow direction, from the feeder to the outlet.
    Type: Application
    Filed: November 8, 2019
    Publication date: February 10, 2022
    Applicant: Technische Universität Berlin
    Inventors: Mathias CZASNY, Aleksander GURLO, Oliver GÖRKE, Franziska SCHMIDT
  • Patent number: 11009166
    Abstract: The invention relates to a locking coupling including a first coupling unit and a second coupling unit, which in each case extend along a longitudinal axis and are designed to be identical. Each coupling unit includes a valve unit and a locking unit. The first and the second valve unit are designed to form a fluid connection between the first and the second coupling unit, and the first and the second locking unit are designed to connect the first coupling unit and the second coupling unit mechanically to one another. The first coupling unit includes an actuating element, by actuation of which the first and the second coupling unit can be mechanically connected to one another via the first and the second locking unit and can be fluidically connected to one another via the first and the second valve unit.
    Type: Grant
    Filed: July 12, 2017
    Date of Patent: May 18, 2021
    Assignee: Technische Universität Berlin
    Inventor: Lars Dornburg