Patents Assigned to Technological Resources PTY
-
Patent number: 7823448Abstract: A gravity gradiometer is disclosed which has a sensor in the form of bars (41 and 42) which are supported on a mounting (5) which has a first mount section (10) and a second mount section (20). A first flexure web (33) pivotally couples the first and second mount sections about a first axis. The second mount has a first part (25), a second part (26) and a third part (27). The parts (25 and 26) are connected by a second flexure web (37) and the parts (26 and 27) are connected by a third flexure web (35). The bars (41 and 42) are located in housings (45 and 47) and form a monolithic structure with the housings (45 and 47) respectively. The housings (45 and 47) are connected to opposite sides of the second mount section 20. The bars (41 and 42) are connected to their respective housings by flexure webs (59). Transducers (71) are located in proximity to the bars for detecting movement of the bars to in turn enable the gravitational gradient tensor to be measured.Type: GrantFiled: August 31, 2006Date of Patent: November 2, 2010Assignee: Technological Resources Pty. Ltd.Inventors: Frank Joachim Van Kann, John Winterflood
-
Patent number: 7814790Abstract: The present invention provides a method of tuning properties of a gravity gradiometer for measuring components of the gravity gradient tensor. The gravity gradiometer comprises a pair of first and second transversely arranged sensor masses that are arranged for movement about an axis and relative to each other in response to a gravity gradient. The gravity gradiometer further comprises first and second capacitors for sensing and influencing the movement of the first and second sensor masses. The method comprising applying a bias voltage to at least one of the capacitors for generating an electrostatic force which acts on one of the sensor masses and thereby influences the movement of that sensor mass.Type: GrantFiled: September 16, 2009Date of Patent: October 19, 2010Assignee: Technological Resources Pty. Ltd.Inventor: Frank Joachim Van Kann
-
Patent number: 7788974Abstract: A gravity gradiometer is disclosed which has a sensor in the form of bars (41 and 42) which are supported on a mounting (5) which has a first mount section (10) and a second mount section (20). A first flexure web (33) pivotally couples the first and second mount sections about a first axis. The second mount has a first part (25), a second part (26) and a third part (27). The parts (25 and 26) are connected by a second flexure web (37) and the parts (26 and 27) are connected by a third flexure web (35). The bars (41 and 42) are located in housings (45 and 47) and form a monolithic structure with the housings (45 and 47) respectively. The housings (45 and 47) are connected to opposite sides of the second mount section 20. The bars (41 and 42) are connected to their respective housings by flexure webs (59). Transducers (71) are located in proximity to the bars for detecting movement of the bars to in turn enable the gravitational gradient tensor to be measured.Type: GrantFiled: August 31, 2006Date of Patent: September 7, 2010Assignee: Technological Resources Pty. Ltd.Inventors: Frank Joachim Van Kann, John Winterflood, Anthony Gordon Mann
-
Patent number: 7784343Abstract: A gravity gradiometer is disclosed which has a sensor in the form of bars (41 and 42) which are supported on a mounting (5) which has a first mount section (10) and a second mount section (20). A first flexure web (33) pivotally couples the first and second mount sections about a first axis. The second mount has a first part (25), a second part (26) and a third part (27). The parts (25 and 26) are connected by a second flexure web (37) and the parts (26 and 27) are connected by a third flexure web (35). The bars (41 and 42) are located in housings (45 and 47) and form a monolithic structure with the housings (45 and 47) respectively. The housings (45 and 47) are connected to opposite sides of the second mount section 20. The bars (41 and 42) are connected to their respective housings by flexure webs (59). Transducers (71) are located in proximity to the bars for detecting movement of the bars to in turn enable the gravitational gradient tensor to be measured.Type: GrantFiled: August 31, 2006Date of Patent: August 31, 2010Assignee: Technological Resources PTY. Ltd.Inventors: Frank Joachim Van Kann, John Winterflood
-
Publication number: 20100154536Abstract: A gravity gradiometer is disclosed which has a sensor in the form of bars (41 and 42) which are supported on a mounting (5) which has a first mount section (10) and a second mount section (20). A first flexure web (33) pivotally couples the first and second mount sections about a first axis. The second mount has a first part (25), a second part (26) and a third part (27). The parts (25 and 26) are connected by a second flexure web (37) and the parts (26 and 27) are connected by a third flexure web (35). The bars (41 and 42) are located in housings (45 and 47) and form a monolithic structure with the housings (45 and 47) respectively. The housings (45 and 47) are connected to opposite sides of the second mount section 20. The bars (41 and 42) are connected to their respective housings by flexure webs (59). Transducers (71) are located in proximity to the bars for detecting movement of the bars to in turn enable the gravitational gradient tensor to be measured.Type: ApplicationFiled: December 21, 2009Publication date: June 24, 2010Applicant: Technological Resources Pty. LimitedInventors: Frank Joachim Van Kann, John Winterflood
-
Patent number: 7727301Abstract: A method and an assembly for treating minerals using microwave energy are disclosed. The method includes exposing a moving bed, preferably a mixed moving bed, of mineral particles to pulsed high energy microwave energy so that at least substantially all particles receive at least some exposure to microwave energy.Type: GrantFiled: September 30, 2005Date of Patent: June 1, 2010Assignee: Technological Resources Pty. LimitedInventor: Raymond Walter Shaw
-
Patent number: 7722800Abstract: A smelting apparatus includes a vessel and a solids injection lance extending through an opening in the wall of a vessel barrel into the interior space of the vessel. The lance includes a central core tube through which to pass solid particulate material into the vessel and an annular cooling jacket surrounding the central core tube throughout a substantial part of its length. The lance has a mounting structure including a tubular part extended about the cooling jacket and about twice the diameter of the cooling jacket. The tubular part fits within a tubular lance mounting bracket welded to the shell of the vessel barrel to extend outwardly from the vessel. The lance is held within the mounting bracket by clamping bolts acting between flanges on the tubular part and the tubular bracket.Type: GrantFiled: July 27, 2005Date of Patent: May 25, 2010Assignee: Technological Resources Pty. LimitedInventors: Trevor Williams, Barry Alan Cady
-
Patent number: 7714584Abstract: The present invention provides a gravity gradiometer for measuring components of the gravity gradient tensor. The gravity gradiometer includes at least one sensor mass for movement in response to a gravity gradient and a sensor and actuator unit for generating an electrical signal in response to the movement of the at least one sensor mass and for influencing the movement of the at least one sensor mass. The gravity gradiometer also includes an electronic circuit for simulating an impedance. The electrical circuit is arranged for amplifying the electrical signal received from the sensor and actuator unit and for directing an actuating signal to the sensor and actuator unit. The electronic circuit includes a differential amplifiers having first and second amplifier input terminals and an amplifier output terminal and impedances Z1, Z2, Z3, at least one of the impedances have an imaginary impedance component.Type: GrantFiled: September 7, 2007Date of Patent: May 11, 2010Assignee: Technological Resources Pty. Ltd.Inventor: Frank Joachim Van Kann
-
Publication number: 20100107756Abstract: A gravity gradiometer is disclosed which has a sensor in the form of bars (41 and 42) which are supported on a mounting (5) which has a first mount section (10) and a second mount section (20). A first flexure web (33) pivotally couples the first and second mount sections about a first axis. The second mount has a first part (25), a second part (26) and a third part (27). The parts (25 and 26) are connected by a second flexure web (37) and the parts (26 and 27) are connected by a third flexure web (35). The bars (41 and 42) are located in housings (45 and 47) and form a monolithic structure with the housings (45 and 47) respectively. The housings (45 and 47) are connected to opposite sides of the second mount section 20. The bars (41 and 42) are connected to their respective housings by flexure webs (59). Transducers (71) are located in proximity to the bars for detecting movement of the bars to in turn enable the gravitational gradient tensor to be measured.Type: ApplicationFiled: December 28, 2009Publication date: May 6, 2010Applicant: Technological Resources PTY, Ltd.Inventors: Frank Joachim Van Kann, John Winterflood
-
Patent number: 7704446Abstract: The present invention relates to an apparatus for injecting gas into a vessel. The apparatus may include a gas flow duct and a central body within a forward end region of the duct. The central body and the gas flow duct form an annular nozzle for the discharge of gas from the duct. A plurality of flow directing vanes are disposed about the central body to impart swirl to a gas flow through the nozzle. The flow directing vanes have substantially straight leading end portions radiating outwardly from the central body and extending along the duct. The vanes also have substantially helical trailing end portions extending helically about the central body toward the front end of the duct and transition portions joining the leading end portions to the trailing end portions. The transition portions are shaped so as to merge smoothly with both the leading end portions and the trailing end portions and to smoothly and progressively change shape between them.Type: GrantFiled: May 31, 2006Date of Patent: April 27, 2010Assignee: Technological Resources Pty. LimitedInventors: Rodney James Dry, Mark Preston Davis, Hector Medina
-
Publication number: 20100095766Abstract: A gravity gradiometer is disclosed which has a sensor in the form of bars (41 and 42) which are supported on a mounting (5) which has a first mount section (10) and a second mount section (20). A first flexure web (33) pivotally couples the first and second mount sections about a first axis. The second mount has a first part (25), a second part (26) and a third part (27). The parts (25 and 26) are connected by a second flexure web (37) and the parts (26 and 27) are connected by a third flexure web (35). The bars (41 and 42) are located in housings (45 and 47) and form a monolithic structure with the housings (45 and 47) respectively. The housings (45 and 47) are connected to opposite sides of the second mount section 20. The bars (41 and 42) are connected to their respective housings by flexure webs (59). Transducers (71) are located in proximity to the bars for detecting movement of the bars to in turn enable the gravitational gradient tensor to be measured.Type: ApplicationFiled: December 23, 2009Publication date: April 22, 2010Applicant: Technological Resources PTY. Ltd.Inventors: Frank Joachim Van Kann, John Winterflood
-
Publication number: 20100095765Abstract: A gravity gradiometer is disclosed which has a sensor in the form of bars (41 and 42) which are supported on a mounting (5) which has a first mount section (10) and a second mount section (20). A first flexure web (33) pivotally couples the first and second mount sections about a first axis. The second mount has a first part (25), a second part (26) and a third part (27). The parts (25 and 26) are connected by a second flexure web (37) and the parts (26 and 27) are connected by a third flexure web (35). The bars (41 and 42) are located in housings (45 and 47) and form a monolithic structure with the housings (45 and 47) respectively. The housings (45 and 47) are connected to opposite sides of the second mount section 20. The bars (41 and 42) are connected to their respective housings by flexure webs (59). Transducers (71) are located in proximity to the bars for detecting movement of the bars to in turn enable the gravitational gradient tensor to be measured.Type: ApplicationFiled: December 23, 2009Publication date: April 22, 2010Applicant: Technological Resources PTY. Ltd.Inventors: Frank Joachim Van Kann, John Winterflood
-
Patent number: 7691178Abstract: A process for producing desulphurised iron in a solid form. The process includes (a) direct smelting an iron-containing metalliferous feed material and producing molten iron; (b) desulphurising molten iron produced in the direct smelting (a); and (c) casting desulphurised molten iron from the desulphurisation (b) into a solid form, such as pigs.Type: GrantFiled: April 18, 2006Date of Patent: April 6, 2010Assignee: Technological Resources Pty. LimitedInventor: Philip James Ions
-
Patent number: 7687020Abstract: An apparatus for injecting particulate and/or gaseous material into a metallurgical vessel for performing a metallurgical process is disclosed. The apparatus comprises a duct and an annular duct tip at a forward end of the duct. The apparatus also comprises inner and outer cooling water flow passages configured such that out flowing water passing from the duct tip to a rear end of the duct must travel through a longer flow path than inflowing water passing from the rear end of the duct to the duct tip.Type: GrantFiled: December 14, 2007Date of Patent: March 30, 2010Assignee: Technological Resources Pty. LimitedInventor: Greg Hardie
-
Patent number: 7686866Abstract: A process for recovering copper from chalcopyrite is disclosed. The process includes oxidising sulphur in chalcopyrite with a solution under predetermined contact conditions and thereby releasing at least part of the copper in the chalcopyrite into the solution as copper ions. The process includes a subsequent step of reducing sulphur in a solid product from step (a) to a minus two, ie. sulphide, valence state with a solution under predetermined contact conditions. The process further includes a subsequent step of oxidising sulphur in a solid product from step (b) with a solution under predetermined contact conditions and thereby releasing at least part of the remaining copper in the solid product into the solution as copper ions. The process further includes recovering copper from one or more of the solutions from steps (a) and (c).Type: GrantFiled: October 20, 2002Date of Patent: March 30, 2010Assignee: Technological Resources PTY LimitedInventors: Raymond W. Shaw, Lucy Esdaile, Andrea R. Gerson, Joan E. Thomas, Sarah L. Harmer
-
Publication number: 20100071462Abstract: The present invention provides a method of tuning properties of a gravity gradiometer for measuring components of the gravity gradient tensor. The gravity gradiometer comprises a pair of first and second transversely arranged sensor masses that are arranged for movement about an axis and relative to each other in response to a gravity gradient. The gravity gradiometer further comprises first and second capacitors for sensing and influencing the movement of the first and second sensor masses. The method comprising applying a bias voltage to at least one of the capacitors for generating an electrostatic force which acts on one of the sensor masses and thereby influences the movement of that sensor mass.Type: ApplicationFiled: September 16, 2009Publication date: March 25, 2010Applicant: Technological Resources PTY. Ltd.Inventor: Frank Joachim Van Kann
-
Patent number: 7678172Abstract: A method of treating ore particles to facilitate subsequent processing of the ore particles to recover valuable components from the ore is disclosed. The method includes exposing the ore particles to microwave energy and causing structural alteration of the ore particles. In one embodiment structural alteration is achieve without significantly altering the mineralogy, i.e., composition, of the ore. In another embodiment structural alteration is achieved with minimal change to the sizes of the ore particles. In another embodiment the method includes exposing the ore particles to short duration, high energy pulses of microwave energy.Type: GrantFiled: May 30, 2003Date of Patent: March 16, 2010Assignee: Technological Resources Pty LtdInventors: Robin John Batterham, Lucy Esdaile, Raymond Walter Shaw, Christopher Robin Cross
-
Publication number: 20100005882Abstract: The present invention provides a method of tuning properties of a gravity gradiometer for measuring components of the gravity gradient tensor. The gravity gradiometer comprises a pair of first and second transversely arranged sensor masses that are arranged for movement about an axis and relative to each other in response to a gravity gradient. The gravity gradiometer further comprises first and second capacitors for sensing and influencing the movement of the first and second sensor masses. The method comprising applying a bias voltage to at least one of the capacitors for generating an electrostatic force which acts on one of the sensor masses and thereby influences the movement of that sensor mass.Type: ApplicationFiled: September 16, 2009Publication date: January 14, 2010Applicant: Technological Resources PTY. Ltd.Inventor: Frank Joachim Van Kann
-
Patent number: 7637153Abstract: A gravity gradiometer is disclosed which comprises a pair of sensor masses arranged in housings. Transducers are provided for measuring movement of the sensor masses in response to the gravity gradient tensor. The masses are supported for movement by a flexure web between the mass and a support and a stop comprises a pair of abutment services defined by a cut prevent movement of the sensor masses beyond the elastic limit of the flexure web.Type: GrantFiled: August 27, 2007Date of Patent: December 29, 2009Assignee: Technological Resources PTY. Ltd.Inventors: Frank Joachim Van Kann, John Winterflood
-
Patent number: 7627954Abstract: A gradiometer is disclosed which has a pair of sensor bars 41, 43 supported in housings 45, 47. Transducers 71 are located adjacent the bars 41, 43 to detect movement of the bars in response to the gravity gradient tensor. At least one of the transducers 71 comprises a first coil 510 and a second coil 516 arranged in parallel and a switch 362 for proportioning current between the coils 510 and 516 so as to create a virtual coil at a position D between the coils 510 and 516.Type: GrantFiled: August 27, 2007Date of Patent: December 8, 2009Assignee: Technological Resources Pty. Ltd.Inventors: Frank Joachim Van Kann, John Winterflood