Patents Assigned to Technologies and Devices International, Inc.
-
Patent number: 7727333Abstract: Hydride phase vapor epitaxy (HVPE) growth apparatus, methods and materials and structures grown thereby. A HVPE growth apparatus includes generation, accumulation and growth zones. A first reactive gas reacts with an indium source inside the generation zone to produce a first gas product having an indium-containing compound. The first gas product is transported to the accumulation zone where it cools and condenses into a source material having an indium-containing compound. The source material is collected in the accumulation zone and evaporated. Vapor or gas resulting from evaporation of the source material forms reacts with a second reactive gas in the growth zone for growth of ternary and quaternary materials including indium gallium nitride, indium aluminum nitride, and indium gallium aluminum nitride.Type: GrantFiled: March 27, 2007Date of Patent: June 1, 2010Assignee: Technologies and Devices International, Inc.Inventors: Alexander L. Syrkin, Vladimir Ivantsov, Alexander Usikov, Oleg Kovalenkov, Vladimir A. Dmitriev
-
Patent number: 7670435Abstract: A method and apparatus for fabricating thin Group III nitride layers as well as Group III nitride layers that exhibit sharp layer-to-layer interfaces are provided. According to one aspect, an HVPE reactor includes one or more gas inlet tubes adjacent to the growth zone, thus allowing fine control of the delivery of reactive gases to the substrate surface. According to another aspect, an HVPE reactor includes both a growth zone and a growth interruption zone. According to another aspect, an HVPE reactor includes a slow growth rate gallium source, thus allowing thin layers to be grown. Using the slow growth rate gallium source in conjunction with a conventional gallium source allows a device structure to be fabricated during a single furnace run that includes both thick layers (i.e., utilizing the conventional gallium source) and thin layers (i.e., utilizing the slow growth rate gallium source).Type: GrantFiled: March 28, 2002Date of Patent: March 2, 2010Assignee: Technologies and Devices International, Inc.Inventors: Denis V. Tsvetkov, Andrey E. Nikolaev, Vladimir A. Dmitriev
-
Patent number: 7611586Abstract: An apparatus for growing bulk GaN and AlGaN single crystal boules, preferably using a modified HVPE process, is provided. The single crystal boules typically have a volume in excess of 4 cubic centimeters with a minimum dimension of approximately 1 centimeter. If desired, the bulk material can be doped during growth to achieve n-, i-, or p-type conductivity. In order to have growth cycles of sufficient duration, preferably an extended Ga source is used in which a portion of the Ga source is maintained at a relatively high temperature while most of the Ga source is maintained at a temperature close to, and just above, the melting temperature of Ga. To grow large boules of AlGaN, preferably multiple Al sources are used, the Al sources being sequentially activated to avoid Al source depletion and excessive degradation.Type: GrantFiled: October 8, 2007Date of Patent: November 3, 2009Assignee: Technologies and Devices International, Inc.Inventors: Yuri V. Melnik, Vitali Soukhoveev, Vladimir Ivantsov, Kaite Tsvetkov, Vladimir A. Dmitriev
-
Publication number: 20090130781Abstract: HVPE method for simultaneously fabricating multiple Group III nitride semiconductor structures during a single reactor run. A HVPE reactor includes a reactor tube, a growth zone, a heating element and a plurality of gas blocks. A substrate holder is capable of holding multiple substrates and can be a single or multi-level substrate holder. The gas delivery blocks are independently controllable. Gas flows from the delivery blocks are mixed to provide a substantially uniform gas environment within the growth zone. The substrate holder can be controlled, e.g., rotated and/or tilted, for uniform material growth. Multiple Group III nitride semiconductor structures can be grown on each substrate during a single fabrication run of the HVPE reactor. Growth on different substrates is substantially uniform and can be performed on larger area substrates, such as 3-12? substrates.Type: ApplicationFiled: November 10, 2008Publication date: May 21, 2009Applicant: TECHNOLOGIES AND DEVICES INTERNATIONAL, INC.Inventors: Vladimir A. Dmitriev, Viacheslav A. Maslennikov, Vitali Soukhoveev, Oleg V. Kovalenkov
-
Publication number: 20090092815Abstract: A method and apparatus for growing low defect, optically transparent, colorless, crack-free, substantially flat, single crystal Group III nitride epitaxial layers with a thickness of at least 10 microns is provided. These layers can be grown on large area substrates comprised of Si, SiC, sapphire, GaN, AlN, GaAs, AlGaN and others. In one aspect, the crack-free Group III nitride layers are grown using a modified HVPE technique. If desired, the shape and the stress of Group III nitride layers can be controlled, thus allowing concave, convex and flat layers to be controllably grown. After the growth of the Group III nitride layer is complete, the substrate can be removed and the freestanding Group III nitride layer used as a seed for the growth of a boule of Group III nitride material. The boule can be sliced into individual wafers for use in the fabrication of a variety of semiconductor structures (e.g., HEMTs, LEDs, etc.).Type: ApplicationFiled: September 22, 2008Publication date: April 9, 2009Applicant: TECHNOLOGIES AND DEVICES INTERNATIONAL, INC.Inventors: Vladimir A. Dmitriev, Yuri V. Melnik
-
Patent number: 7501023Abstract: A method and apparatus for growing low defect, optically transparent, colorless, crack-free, substantially flat, single crystal Group III nitride epitaxial layers with a thickness of at least 10 microns is provided. These layers can be grown on large area substrates comprised of Si, SiC, sapphire, GaN, AlN, GaAs, AlGaN and others. In one aspect, the crack-free Group III nitride layers are grown using a modified HVPE technique. If desired, the shape and the stress of Group III nitride layers can be controlled, thus allowing concave, convex and flat layers to be controllably grown. After the growth of the Group III nitride layer is complete, the substrate can be removed and the freestanding Group III nitride layer used as a seed for the growth of a boule of Group III nitride material. The boule can be sliced into individual wafers for use in the fabrication of a variety of semiconductor structures (e.g., HEMTs, LEDs, etc.).Type: GrantFiled: February 13, 2004Date of Patent: March 10, 2009Assignee: Technologies and Devices, International, Inc.Inventors: Vladimir A. Dmitriev, Yuri V. Melnik
-
Publication number: 20080022926Abstract: An apparatus for growing bulk GaN and AlGaN single crystal boules, preferably using a modified HVPE process, is provided. The single crystal boules typically have a volume in excess of 4 cubic centimeters with a minimum dimension of approximately 1 centimeter. If desired, the bulk material can be doped during growth to achieve n-, i-, or p-type conductivity. In order to have growth cycles of sufficient duration, preferably an extended Ga source is used in which a portion of the Ga source is maintained at a relatively high temperature while most of the Ga source is maintained at a temperature close to, and just above, the melting temperature of Ga. To grow large boules of AlGaN, preferably multiple Al sources are used, the Al sources being sequentially activated to avoid Al source depletion and excessive degradation.Type: ApplicationFiled: October 8, 2007Publication date: January 31, 2008Applicant: TECHNOLOGIES AND DEVICES INTERNATIONAL, INC.Inventors: Yuri Melnik, Vitali Soukhoveev, Vladimir Ivantsov, Katie Tsvetkov, Vladimir Dmitriev
-
Patent number: 7279047Abstract: An apparatus for growing bulk GaN and AlGaN single crystal boules, preferably using a modified HVPE process, is provided. The single crystal boules typically have a volume in excess of 4 cubic centimeters with a minimum dimension of approximately 1 centimeter. If desired, the bulk material can be doped during growth to achieve n-, i-, or p-type conductivity. In order to have growth cycles of sufficient duration, preferably an extended Ga source is used in which a portion of the Ga source is maintained at a relatively high temperature while most of the Ga source is maintained at a temperature close to, and just above, the melting temperature of Ga. To grow large boules of AlGaN, preferably multiple Al sources are used, the Al sources being sequentially activated to avoid Al source depletion and excessive degradation.Type: GrantFiled: August 1, 2003Date of Patent: October 9, 2007Assignee: Technologies and Devices, International, Inc.Inventors: Yuri V. Melnik, Vitali Soukhoveev, Vladimir Ivantsov, Katie Tsvetkov, Vladimir A. Dmitriev
-
Patent number: 6936357Abstract: Bulk GaN and AlGaN single crystal boules, preferably fabricated using a modified HVPE process, are provided. The single crystal boules typically have a volume in excess of 4 cubic centimeters with a minimum dimension of approximately 1 centimeter. If desired, the bulk material can be doped during growth, for example to achieve n-, i-, or p-type conductivity.Type: GrantFiled: January 31, 2003Date of Patent: August 30, 2005Assignee: Technologies and Devices International, Inc.Inventors: Yuri V. Melnik, Vitali Soukhoveev, Vladimir Ivantsov, Katie Tsvetkov, Vladimir A. Dmitriev
-
Patent number: 6849862Abstract: A method for fabricating p-type, i-type, and n-type III-V compound materials using HVPE techniques is provided. If desired, these materials can be grown directly onto the surface of a substrate without the inclusion of a low temperature buffer layer. By growing multiple layers of differing conductivity, a variety of different device structures can be fabricated including simple p-n homojunction and heterojunction structures as well as more complex structures in which the p-n junction, either homojunction or heterojunction, is interposed between a pair of wide band gap material layers. The provided method can also be used to fabricate a device in which a non-continuous quantum dot layer is grown within the p-n junction. The quantum dot layer is comprised of a plurality of quantum dot regions, each of which is typically between approximately 20 and 30 Angstroms per axis. The quantum dot layer is preferably comprised of AlxByInzGa1-x-y-zN, InGaN1-a-bPaAsb, or AlxByInzGa1-x-y-zN1-a-bPaAsb.Type: GrantFiled: May 18, 2001Date of Patent: February 1, 2005Assignee: Technologies and Devices International, Inc.Inventors: Audrey E. Nikolaev, Yuri V. Melnik, Konstantin V. Vassilevski, Vladimir A. Dmitriev
-
Patent number: 6706119Abstract: A method and apparatus for fabricating thin Group III nitride layers as well as Group III nitride layers that exhibit sharp layer-to-layer interfaces are provided. According to one aspect, an HVPE reactor includes one or more gas inlet tubes adjacent to the growth zone, thus allowing fine control of the delivery of reactive gases to the substrate surface. According to another aspect, an HVPE reactor includes both a growth zone and a growth interruption zone. According to another aspect, an HVPE reactor includes a slow growth rate gallium source, thus allowing thin layers to be grown. Using the slow growth rate gallium source in conjunction with a conventional gallium source allows a device structure to be fabricated during a single furnace run that includes both thick layers (i.e., utilizing the conventional gallium source) and thin layers (i.e., utilizing the slow growth rate gallium source).Type: GrantFiled: March 28, 2002Date of Patent: March 16, 2004Assignee: Technologies and Devices International, Inc.Inventors: Denis V. Tsvetkov, Andrey E. Nikolaev, Vladimir A. Dmitriev
-
Publication number: 20030226496Abstract: Bulk GaN and AlGaN single crystal boules, preferably fabricated using a modified HVPE process, are provided. The single crystal boules typically have a volume in excess of 4 cubic centimeters with a minimum dimension of approximately 1 centimeter. If desired, the bulk material can be doped during growth, for example to achieve n-, i-, or p-type conductivity.Type: ApplicationFiled: January 31, 2003Publication date: December 11, 2003Applicant: Technologies and Devices International, Inc.Inventors: Yuri V. Melnik, Vitali Soukhoveev, Vladimir Ivantsov, Katie Tsvetkov, Vladimir A. Dmitriev
-
Patent number: 6660083Abstract: A method and apparatus for fabricating thin Group III nitride layers as well as Group III nitride layers that exhibit sharp layer-to-layer interfaces are provided. According to one aspect, an HVPE reactor includes one or more gas inlet tubes adjacent to the growth zone, thus allowing fine control of the delivery of reactive gases to the substrate surface. According to another aspect, an HVPE reactor includes both a growth zone and a growth interruption zone. According to another aspect, an HVPE reactor includes a slow growth rate gallium source, thus allowing thin layers to be grown. Using the slow growth rate gallium source in conjunction with a conventional gallium source allows a device structure to be fabricated during a single furnace run that includes both thick layers (i.e., utilizing the conventional gallium source) and thin layers (i.e., utilizing the slow growth rate gallium source).Type: GrantFiled: March 28, 2002Date of Patent: December 9, 2003Assignee: Technologies and Devices International, Inc.Inventors: Denis V. Tsvetkov, Andrey E. Nikolaev, Vladimir A. Dmitriev
-
Patent number: 6656285Abstract: An apparatus for growing bulk GaN and AlGaN single crystal boules, preferably using a modified HVPE process, is provided. The single crystal boules typically have a volume in excess of 4 cubic centimeters with a minimum dimension of approximately 1 centimeter. If desired, the bulk material can be doped during growth to achieve n-, i-, or p-type conductivity. In order to have growth cycles of sufficient duration, preferably an extended Ga source is used in which a portion of the Ga source is maintained at a relatively high temperature while most of the Ga source is maintained at a temperature close to, and just above, the melting temperature of Ga. To grow large boules of AlGaN, preferably multiple Al sources are used, the Al sources being sequentially activated to avoid Al source depletion and excessive degradation.Type: GrantFiled: July 11, 2001Date of Patent: December 2, 2003Assignee: Technologies and Devices International, Inc.Inventors: Yuri V. Melnik, Vitali Soukhoveev, Vladimir Ivantsov, Katie Tsvetkov, Vladimir A. Dmitriev
-
Patent number: 6656272Abstract: A method and apparatus for fabricating thin Group III nitride layers as well as Group III nitride layers that exhibit sharp layer-to-layer interfaces are provided. According to one aspect, an HVPE reactor includes one or more gas inlet tubes adjacent to the growth zone, thus allowing fine control of the delivery of reactive gases to the substrate surface. According to another aspect, an HVPE reactor includes both a growth zone and a growth interruption zone. According to another aspect, an HVPE reactor includes a slow growth rate gallium source, thus allowing thin layers to be grown. Using the slow growth rate gallium source in conjunction with a conventional gallium source allows a device structure to be fabricated during a single furnace run that includes both thick layers (i.e., utilizing the conventional gallium source) and thin layers (i.e., utilizing the slow growth rate gallium source).Type: GrantFiled: March 28, 2002Date of Patent: December 2, 2003Assignee: Technologies and Devices International, Inc.Inventors: Denis V. Tsvetkov, Andrey E. Nikolaev, Vladimir A. Dmitriev
-
Patent number: 6616757Abstract: A method for growing bulk GaN and AlGaN single crystal boules, preferably using a modified HVPE process, is provided. The single crystal boules typically have a volume in excess of 4 cubic centimeters with a minimum dimension of approximately 1 centimeter. If desired, the bulk material can be doped during growth to achieve n-, i-, or p-type conductivity. In order to have growth cycles of sufficient duration, preferably an extended Ga source is used in which a portion of the Ga source is maintained at a relatively high temperature while most of the Ga source is maintained at a temperature close to, and just above, the melting temperature of Ga. To grow large boules of AlGaN, preferably multiple Al sources are used, the Al sources being sequentially activated to avoid Al source depletion and excessive degradation.Type: GrantFiled: July 11, 2001Date of Patent: September 9, 2003Assignee: Technologies and Devices International, Inc.Inventors: Yuri V. Melnik, Vitali Soukhoveev, Vladimir Ivantsov, Katie Tsvetkov, Vladimir A. Dmitriev
-
Patent number: 6613143Abstract: A method for growing bulk GaN and AlGaN single crystal boules, preferably using a modified HVPE process, is provided. The single crystal boules typically have a volume in excess of 4 cubic centimeters with a minimum dimension of approximately 1 centimeter. If desired, the bulk material can be doped during growth to achieve n-, i-, or p-type conductivity. In order to have growth cycles of sufficient duration, preferably an extended Ga source is used in which a portion of the Ga source is maintained at a relatively high temperature while most of the Ga source is maintained at a temperature close to, and just above, the melting temperature of Ga. To grow large boules of AlGaN, preferably multiple Al sources are used, the Al sources being sequentially activated to avoid Al source depletion and excessive degradation.Type: GrantFiled: July 6, 2001Date of Patent: September 2, 2003Assignee: Technologies and Devices International, Inc.Inventors: Yuri V. Melnik, Vitali Soukhoveev, Vladimir Ivantsov, Katie Tsvetkov, Vladimir A. Dmitriev
-
Patent number: 6599133Abstract: A method for fabricating p-type, i-type, and n-type III-V compound materials using HVPE techniques is provided. If desired, these materials can be grown directly onto the surface of a substrate without the inclusion of a low temperature buffer layer. By growing multiple layers of differing conductivity, a variety of different device structures can be fabricated including simple p-n homojunction and heterojunction structures as well as more complex structures in which the p-n junction, either homojunction or heterojunction, is interposed between a pair of wide band gap material layers. The provided method can also be used to fabricate a device in which a non-continuous quantum dot layer is grown within the p-n junction. The quantum dot layer is comprised of a plurality of quantum dot regions, each of which is typically between approximately 20 and 30 Angstroms per axis.Type: GrantFiled: May 18, 2001Date of Patent: July 29, 2003Assignee: Technologies and Devices International, Inc.Inventors: Audrey E. Nikolaev, Yuri V. Melnik, Konstantin V. Vassilevski, Vladimir A. Dmitriev
-
Patent number: 6579359Abstract: A method is disclosed for fabricating monocrystal material with the bandgap width exceeding 1.8 eV. The method comprises the steps of processing a monocrystal semiconductor wafer to develop a porous layer through electrolytic treatment of the wafer at direct current under UV-illumination, and epitaxially growing a monocrystal layer on said porous layer. Growth on porous layer produces semiconductor material with reduced stress and better characteristics than with the same material grown on non-porous layers and substrates. Also, semiconductor device structure comprising at least one layer of porous group III material is included.Type: GrantFiled: June 2, 2000Date of Patent: June 17, 2003Assignee: Technologies and Devices International, Inc.Inventors: Marina Mynbaeva, Denis Tsvetkov, Vladimir Dmitriev, Alexander Lebedev, Nataliya Savkina, Alexander Syrkin, Stephen Saddow, Karim Mynbaev
-
Patent number: 6576054Abstract: A method for growing bulk GaN and AlGaN single crystal boules, preferably using a modified HVPE process, is provided. The single crystal boules typically have a volume in excess of 4 cubic centimeters with a minimum dimension of approximately 1 centimeter. If desired, the bulk material can be doped during growth to achieve n-, i-, or p-type conductivity. In order to have growth cycles of sufficient duration, preferably an extended Ga source is used in which a portion of the Ga source is maintained at a relatively high temperature while most of the Ga source is maintained at a temperature close to, and just above, the melting temperature of Ga. To grow large boules of AlGaN, preferably multiple Al sources are used, the Al sources being sequentially activated to avoid Al source depletion and excessive degradation.Type: GrantFiled: July 9, 2001Date of Patent: June 10, 2003Assignee: Technologies and Devices International, Inc.Inventors: Yuri V. Melnik, Vitali Soukhoveev, Vladimir Ivantsov, Katie Tsvetkov, Vladimir A. Dmitriev