Patents Assigned to Technologies & Devices
-
Patent number: 11880730Abstract: A RFID tag configured with a Near Field Communication (NFC) protocol is sealed between water-resistant layers and affixed to a fabric. The NFC-configured tag can be programmed with instructions to automatically direct an electronic device to a web address by which means virtually any additional information can be communicated to the user of the electronic device. According to a method aspect, the NFC-configured tag is initially sealed between water-resistant layers. A compatible water-resistant layer is affixed to a fabric and then the sealed NFC-configured tag and a further water-resistant cover layer are affixed to the fabric over the previously-affixed compatible layer. The tag is then securely and permanently affixed to the fabric, with which the tag can be safely subjected to repeated wear and washing.Type: GrantFiled: March 14, 2022Date of Patent: January 23, 2024Assignee: Smart Technology Device Integration, LLCInventors: Antonio Cioffi, Jhonathan Graffe, Yvan Barberan
-
Patent number: 8248231Abstract: A monitoring system having a device on a person which can process and transmit signals from at least one biosensor and a receiver located close to the patient, which can receive these signals. The receiver, which may be a portable telephone, can process the signals and provide an indication of the parameter(s) being monitored and may also, or as an alternative, forward the received signals to a remote monitor. The monitoring system may further include a device for indicating when the transmitter is not receiving a signal from the transmitter and can also include a device so that when a parameter reaches a critical care level, a warning signal is given. The monitoring system is such that the person being monitored is effectively not limited to remaining within a required distance of a fixed part of the system.Type: GrantFiled: November 8, 2002Date of Patent: August 21, 2012Assignees: Sensor Technology and Devices Ltd.Inventor: Peter James Taylor
-
Publication number: 20100145202Abstract: A method of determining information concerning the identity of an individual comprising measuring at least one biometric of the individual comprising at least one bio-potential waveform generated by the individual's heart, extracting a plurality of characteristics from the bio-potential waveform comprising any of an approximate location of a point of a P peak, an approximate location of a Q-point of a QRS peak system, an approximate location of an R-point of a QRS peak system, an approximate location of an S-point of a QRS peak system, an approximate location of a point of a T peak, using the characteristics to calculate at least one waveform parameter, comparing at least one calculated waveform parameter with at least one previously-acquired waveform parameter to generate a score, and using the score to determine information concerning the identity of the individual.Type: ApplicationFiled: March 7, 2008Publication date: June 10, 2010Applicant: SENSOR TECHNOLOGY & DEVICES LIMITEDInventors: James Andrew Mclaughlin, John McCune Anderson, Kenneth Anthony Kearney
-
Patent number: 7727333Abstract: Hydride phase vapor epitaxy (HVPE) growth apparatus, methods and materials and structures grown thereby. A HVPE growth apparatus includes generation, accumulation and growth zones. A first reactive gas reacts with an indium source inside the generation zone to produce a first gas product having an indium-containing compound. The first gas product is transported to the accumulation zone where it cools and condenses into a source material having an indium-containing compound. The source material is collected in the accumulation zone and evaporated. Vapor or gas resulting from evaporation of the source material forms reacts with a second reactive gas in the growth zone for growth of ternary and quaternary materials including indium gallium nitride, indium aluminum nitride, and indium gallium aluminum nitride.Type: GrantFiled: March 27, 2007Date of Patent: June 1, 2010Assignee: Technologies and Devices International, Inc.Inventors: Alexander L. Syrkin, Vladimir Ivantsov, Alexander Usikov, Oleg Kovalenkov, Vladimir A. Dmitriev
-
Patent number: 7670435Abstract: A method and apparatus for fabricating thin Group III nitride layers as well as Group III nitride layers that exhibit sharp layer-to-layer interfaces are provided. According to one aspect, an HVPE reactor includes one or more gas inlet tubes adjacent to the growth zone, thus allowing fine control of the delivery of reactive gases to the substrate surface. According to another aspect, an HVPE reactor includes both a growth zone and a growth interruption zone. According to another aspect, an HVPE reactor includes a slow growth rate gallium source, thus allowing thin layers to be grown. Using the slow growth rate gallium source in conjunction with a conventional gallium source allows a device structure to be fabricated during a single furnace run that includes both thick layers (i.e., utilizing the conventional gallium source) and thin layers (i.e., utilizing the slow growth rate gallium source).Type: GrantFiled: March 28, 2002Date of Patent: March 2, 2010Assignee: Technologies and Devices International, Inc.Inventors: Denis V. Tsvetkov, Andrey E. Nikolaev, Vladimir A. Dmitriev
-
Patent number: 7611586Abstract: An apparatus for growing bulk GaN and AlGaN single crystal boules, preferably using a modified HVPE process, is provided. The single crystal boules typically have a volume in excess of 4 cubic centimeters with a minimum dimension of approximately 1 centimeter. If desired, the bulk material can be doped during growth to achieve n-, i-, or p-type conductivity. In order to have growth cycles of sufficient duration, preferably an extended Ga source is used in which a portion of the Ga source is maintained at a relatively high temperature while most of the Ga source is maintained at a temperature close to, and just above, the melting temperature of Ga. To grow large boules of AlGaN, preferably multiple Al sources are used, the Al sources being sequentially activated to avoid Al source depletion and excessive degradation.Type: GrantFiled: October 8, 2007Date of Patent: November 3, 2009Assignee: Technologies and Devices International, Inc.Inventors: Yuri V. Melnik, Vitali Soukhoveev, Vladimir Ivantsov, Kaite Tsvetkov, Vladimir A. Dmitriev
-
Publication number: 20090130781Abstract: HVPE method for simultaneously fabricating multiple Group III nitride semiconductor structures during a single reactor run. A HVPE reactor includes a reactor tube, a growth zone, a heating element and a plurality of gas blocks. A substrate holder is capable of holding multiple substrates and can be a single or multi-level substrate holder. The gas delivery blocks are independently controllable. Gas flows from the delivery blocks are mixed to provide a substantially uniform gas environment within the growth zone. The substrate holder can be controlled, e.g., rotated and/or tilted, for uniform material growth. Multiple Group III nitride semiconductor structures can be grown on each substrate during a single fabrication run of the HVPE reactor. Growth on different substrates is substantially uniform and can be performed on larger area substrates, such as 3-12? substrates.Type: ApplicationFiled: November 10, 2008Publication date: May 21, 2009Applicant: TECHNOLOGIES AND DEVICES INTERNATIONAL, INC.Inventors: Vladimir A. Dmitriev, Viacheslav A. Maslennikov, Vitali Soukhoveev, Oleg V. Kovalenkov
-
Publication number: 20090092815Abstract: A method and apparatus for growing low defect, optically transparent, colorless, crack-free, substantially flat, single crystal Group III nitride epitaxial layers with a thickness of at least 10 microns is provided. These layers can be grown on large area substrates comprised of Si, SiC, sapphire, GaN, AlN, GaAs, AlGaN and others. In one aspect, the crack-free Group III nitride layers are grown using a modified HVPE technique. If desired, the shape and the stress of Group III nitride layers can be controlled, thus allowing concave, convex and flat layers to be controllably grown. After the growth of the Group III nitride layer is complete, the substrate can be removed and the freestanding Group III nitride layer used as a seed for the growth of a boule of Group III nitride material. The boule can be sliced into individual wafers for use in the fabrication of a variety of semiconductor structures (e.g., HEMTs, LEDs, etc.).Type: ApplicationFiled: September 22, 2008Publication date: April 9, 2009Applicant: TECHNOLOGIES AND DEVICES INTERNATIONAL, INC.Inventors: Vladimir A. Dmitriev, Yuri V. Melnik
-
Patent number: 7501023Abstract: A method and apparatus for growing low defect, optically transparent, colorless, crack-free, substantially flat, single crystal Group III nitride epitaxial layers with a thickness of at least 10 microns is provided. These layers can be grown on large area substrates comprised of Si, SiC, sapphire, GaN, AlN, GaAs, AlGaN and others. In one aspect, the crack-free Group III nitride layers are grown using a modified HVPE technique. If desired, the shape and the stress of Group III nitride layers can be controlled, thus allowing concave, convex and flat layers to be controllably grown. After the growth of the Group III nitride layer is complete, the substrate can be removed and the freestanding Group III nitride layer used as a seed for the growth of a boule of Group III nitride material. The boule can be sliced into individual wafers for use in the fabrication of a variety of semiconductor structures (e.g., HEMTs, LEDs, etc.).Type: GrantFiled: February 13, 2004Date of Patent: March 10, 2009Assignee: Technologies and Devices, International, Inc.Inventors: Vladimir A. Dmitriev, Yuri V. Melnik
-
Publication number: 20090043185Abstract: A flexible biomedical surface electrode comprises an insulating substrate (10), a conductive electrode layer (12) screen-printed on the substrate, and an insulating masking layer (14) on the electrode layer. The masking layer is configured to expose selected regions (16) of the electrode layer. An electrically conductive adhesive gel layer (18) on the masking layer makes electrical contact with the exposed regions of the electrode layer.Type: ApplicationFiled: February 16, 2007Publication date: February 12, 2009Applicant: SENSOR TECHNOLOGY AND DEVICES LTD.Inventors: Eric Thomas McAdams, John McCune Anderson, James Andrew McLaughlin
-
Publication number: 20080022926Abstract: An apparatus for growing bulk GaN and AlGaN single crystal boules, preferably using a modified HVPE process, is provided. The single crystal boules typically have a volume in excess of 4 cubic centimeters with a minimum dimension of approximately 1 centimeter. If desired, the bulk material can be doped during growth to achieve n-, i-, or p-type conductivity. In order to have growth cycles of sufficient duration, preferably an extended Ga source is used in which a portion of the Ga source is maintained at a relatively high temperature while most of the Ga source is maintained at a temperature close to, and just above, the melting temperature of Ga. To grow large boules of AlGaN, preferably multiple Al sources are used, the Al sources being sequentially activated to avoid Al source depletion and excessive degradation.Type: ApplicationFiled: October 8, 2007Publication date: January 31, 2008Applicant: TECHNOLOGIES AND DEVICES INTERNATIONAL, INC.Inventors: Yuri Melnik, Vitali Soukhoveev, Vladimir Ivantsov, Katie Tsvetkov, Vladimir Dmitriev
-
Patent number: 7279047Abstract: An apparatus for growing bulk GaN and AlGaN single crystal boules, preferably using a modified HVPE process, is provided. The single crystal boules typically have a volume in excess of 4 cubic centimeters with a minimum dimension of approximately 1 centimeter. If desired, the bulk material can be doped during growth to achieve n-, i-, or p-type conductivity. In order to have growth cycles of sufficient duration, preferably an extended Ga source is used in which a portion of the Ga source is maintained at a relatively high temperature while most of the Ga source is maintained at a temperature close to, and just above, the melting temperature of Ga. To grow large boules of AlGaN, preferably multiple Al sources are used, the Al sources being sequentially activated to avoid Al source depletion and excessive degradation.Type: GrantFiled: August 1, 2003Date of Patent: October 9, 2007Assignee: Technologies and Devices, International, Inc.Inventors: Yuri V. Melnik, Vitali Soukhoveev, Vladimir Ivantsov, Katie Tsvetkov, Vladimir A. Dmitriev
-
Patent number: 6955719Abstract: A method for fabricating semiconductor devices with thin (e.g., submicron) and/or thick (e.g., between 1 micron and 100 microns thick) Group III nitride layers during a single epitaxial run is provided, the layers exhibiting sharp layer-to-layer interfaces. According to one aspect, an HVPE reactor is provided that includes one or more gas inlet tubes adjacent to the growth zone, thus allowing fine control of the delivery of reactive gases to the substrate surface. According to another aspect, an HVPE reactor is provided that includes at least one growth zone as well as a growth interruption zone. According to another aspect, an HVPE reactor is provided that includes extended growth sources such as slow growth rate gallium source with a reduced gallium surface area. According to another aspect, an HVPE reactor is provided that includes multiple sources of the same material, for example Mg, which can be used sequentially to prolong a growth cycle.Type: GrantFiled: July 18, 2003Date of Patent: October 18, 2005Assignee: Technologies and Devices, Inc.Inventors: Vladimir A. Dmitriev, Denis V. Tsvetkov, Aleksei Pechnikov, Yuri V. Melnik, Aleksandr Usikov, Oleg Kovalenkov
-
Patent number: 6936357Abstract: Bulk GaN and AlGaN single crystal boules, preferably fabricated using a modified HVPE process, are provided. The single crystal boules typically have a volume in excess of 4 cubic centimeters with a minimum dimension of approximately 1 centimeter. If desired, the bulk material can be doped during growth, for example to achieve n-, i-, or p-type conductivity.Type: GrantFiled: January 31, 2003Date of Patent: August 30, 2005Assignee: Technologies and Devices International, Inc.Inventors: Yuri V. Melnik, Vitali Soukhoveev, Vladimir Ivantsov, Katie Tsvetkov, Vladimir A. Dmitriev
-
Patent number: 6849862Abstract: A method for fabricating p-type, i-type, and n-type III-V compound materials using HVPE techniques is provided. If desired, these materials can be grown directly onto the surface of a substrate without the inclusion of a low temperature buffer layer. By growing multiple layers of differing conductivity, a variety of different device structures can be fabricated including simple p-n homojunction and heterojunction structures as well as more complex structures in which the p-n junction, either homojunction or heterojunction, is interposed between a pair of wide band gap material layers. The provided method can also be used to fabricate a device in which a non-continuous quantum dot layer is grown within the p-n junction. The quantum dot layer is comprised of a plurality of quantum dot regions, each of which is typically between approximately 20 and 30 Angstroms per axis. The quantum dot layer is preferably comprised of AlxByInzGa1-x-y-zN, InGaN1-a-bPaAsb, or AlxByInzGa1-x-y-zN1-a-bPaAsb.Type: GrantFiled: May 18, 2001Date of Patent: February 1, 2005Assignee: Technologies and Devices International, Inc.Inventors: Audrey E. Nikolaev, Yuri V. Melnik, Konstantin V. Vassilevski, Vladimir A. Dmitriev
-
Patent number: 6706119Abstract: A method and apparatus for fabricating thin Group III nitride layers as well as Group III nitride layers that exhibit sharp layer-to-layer interfaces are provided. According to one aspect, an HVPE reactor includes one or more gas inlet tubes adjacent to the growth zone, thus allowing fine control of the delivery of reactive gases to the substrate surface. According to another aspect, an HVPE reactor includes both a growth zone and a growth interruption zone. According to another aspect, an HVPE reactor includes a slow growth rate gallium source, thus allowing thin layers to be grown. Using the slow growth rate gallium source in conjunction with a conventional gallium source allows a device structure to be fabricated during a single furnace run that includes both thick layers (i.e., utilizing the conventional gallium source) and thin layers (i.e., utilizing the slow growth rate gallium source).Type: GrantFiled: March 28, 2002Date of Patent: March 16, 2004Assignee: Technologies and Devices International, Inc.Inventors: Denis V. Tsvetkov, Andrey E. Nikolaev, Vladimir A. Dmitriev
-
Publication number: 20040026704Abstract: A method for fabricating p-type, i-type, and n-type III-V compound materials using HVPE techniques is provided. If desired, these materials can be grown directly onto the surface of a substrate without the inclusion of a low temperature buffer layer. By growing multiple layers of differing conductivity, a variety of different device structures can be fabricated including simple p-n homojunction and heterojunction structures as well as more complex structures in which the p-n junction, either homojunction or heterojunction, is interposed between a pair of wide band gap material layers. The provided method can also be used to fabricate a device in which a non-continuous quantum dot layer is grown within the p-n junction. The quantum dot layer is comprised of a plurality of quantum dot regions, each of which is typically between approximately 20 and 30 Angstroms per axis.Type: ApplicationFiled: May 18, 2001Publication date: February 12, 2004Applicant: Technologies & Devices Int.'s Inc.Inventors: Audrey E. Nikolaev, Yuri V. Melnik, Konstantin V. Vassilevski, Vladimir A. Dmitriev
-
Publication number: 20030226496Abstract: Bulk GaN and AlGaN single crystal boules, preferably fabricated using a modified HVPE process, are provided. The single crystal boules typically have a volume in excess of 4 cubic centimeters with a minimum dimension of approximately 1 centimeter. If desired, the bulk material can be doped during growth, for example to achieve n-, i-, or p-type conductivity.Type: ApplicationFiled: January 31, 2003Publication date: December 11, 2003Applicant: Technologies and Devices International, Inc.Inventors: Yuri V. Melnik, Vitali Soukhoveev, Vladimir Ivantsov, Katie Tsvetkov, Vladimir A. Dmitriev
-
Patent number: 6660083Abstract: A method and apparatus for fabricating thin Group III nitride layers as well as Group III nitride layers that exhibit sharp layer-to-layer interfaces are provided. According to one aspect, an HVPE reactor includes one or more gas inlet tubes adjacent to the growth zone, thus allowing fine control of the delivery of reactive gases to the substrate surface. According to another aspect, an HVPE reactor includes both a growth zone and a growth interruption zone. According to another aspect, an HVPE reactor includes a slow growth rate gallium source, thus allowing thin layers to be grown. Using the slow growth rate gallium source in conjunction with a conventional gallium source allows a device structure to be fabricated during a single furnace run that includes both thick layers (i.e., utilizing the conventional gallium source) and thin layers (i.e., utilizing the slow growth rate gallium source).Type: GrantFiled: March 28, 2002Date of Patent: December 9, 2003Assignee: Technologies and Devices International, Inc.Inventors: Denis V. Tsvetkov, Andrey E. Nikolaev, Vladimir A. Dmitriev
-
Patent number: 6656272Abstract: A method and apparatus for fabricating thin Group III nitride layers as well as Group III nitride layers that exhibit sharp layer-to-layer interfaces are provided. According to one aspect, an HVPE reactor includes one or more gas inlet tubes adjacent to the growth zone, thus allowing fine control of the delivery of reactive gases to the substrate surface. According to another aspect, an HVPE reactor includes both a growth zone and a growth interruption zone. According to another aspect, an HVPE reactor includes a slow growth rate gallium source, thus allowing thin layers to be grown. Using the slow growth rate gallium source in conjunction with a conventional gallium source allows a device structure to be fabricated during a single furnace run that includes both thick layers (i.e., utilizing the conventional gallium source) and thin layers (i.e., utilizing the slow growth rate gallium source).Type: GrantFiled: March 28, 2002Date of Patent: December 2, 2003Assignee: Technologies and Devices International, Inc.Inventors: Denis V. Tsvetkov, Andrey E. Nikolaev, Vladimir A. Dmitriev