Patents Assigned to Technologies & Devices
  • Patent number: 11880730
    Abstract: A RFID tag configured with a Near Field Communication (NFC) protocol is sealed between water-resistant layers and affixed to a fabric. The NFC-configured tag can be programmed with instructions to automatically direct an electronic device to a web address by which means virtually any additional information can be communicated to the user of the electronic device. According to a method aspect, the NFC-configured tag is initially sealed between water-resistant layers. A compatible water-resistant layer is affixed to a fabric and then the sealed NFC-configured tag and a further water-resistant cover layer are affixed to the fabric over the previously-affixed compatible layer. The tag is then securely and permanently affixed to the fabric, with which the tag can be safely subjected to repeated wear and washing.
    Type: Grant
    Filed: March 14, 2022
    Date of Patent: January 23, 2024
    Assignee: Smart Technology Device Integration, LLC
    Inventors: Antonio Cioffi, Jhonathan Graffe, Yvan Barberan
  • Patent number: 8248231
    Abstract: A monitoring system having a device on a person which can process and transmit signals from at least one biosensor and a receiver located close to the patient, which can receive these signals. The receiver, which may be a portable telephone, can process the signals and provide an indication of the parameter(s) being monitored and may also, or as an alternative, forward the received signals to a remote monitor. The monitoring system may further include a device for indicating when the transmitter is not receiving a signal from the transmitter and can also include a device so that when a parameter reaches a critical care level, a warning signal is given. The monitoring system is such that the person being monitored is effectively not limited to remaining within a required distance of a fixed part of the system.
    Type: Grant
    Filed: November 8, 2002
    Date of Patent: August 21, 2012
    Assignees: Sensor Technology and Devices Ltd.
    Inventor: Peter James Taylor
  • Publication number: 20100145202
    Abstract: A method of determining information concerning the identity of an individual comprising measuring at least one biometric of the individual comprising at least one bio-potential waveform generated by the individual's heart, extracting a plurality of characteristics from the bio-potential waveform comprising any of an approximate location of a point of a P peak, an approximate location of a Q-point of a QRS peak system, an approximate location of an R-point of a QRS peak system, an approximate location of an S-point of a QRS peak system, an approximate location of a point of a T peak, using the characteristics to calculate at least one waveform parameter, comparing at least one calculated waveform parameter with at least one previously-acquired waveform parameter to generate a score, and using the score to determine information concerning the identity of the individual.
    Type: Application
    Filed: March 7, 2008
    Publication date: June 10, 2010
    Applicant: SENSOR TECHNOLOGY & DEVICES LIMITED
    Inventors: James Andrew Mclaughlin, John McCune Anderson, Kenneth Anthony Kearney
  • Patent number: 7727333
    Abstract: Hydride phase vapor epitaxy (HVPE) growth apparatus, methods and materials and structures grown thereby. A HVPE growth apparatus includes generation, accumulation and growth zones. A first reactive gas reacts with an indium source inside the generation zone to produce a first gas product having an indium-containing compound. The first gas product is transported to the accumulation zone where it cools and condenses into a source material having an indium-containing compound. The source material is collected in the accumulation zone and evaporated. Vapor or gas resulting from evaporation of the source material forms reacts with a second reactive gas in the growth zone for growth of ternary and quaternary materials including indium gallium nitride, indium aluminum nitride, and indium gallium aluminum nitride.
    Type: Grant
    Filed: March 27, 2007
    Date of Patent: June 1, 2010
    Assignee: Technologies and Devices International, Inc.
    Inventors: Alexander L. Syrkin, Vladimir Ivantsov, Alexander Usikov, Oleg Kovalenkov, Vladimir A. Dmitriev
  • Patent number: 7670435
    Abstract: A method and apparatus for fabricating thin Group III nitride layers as well as Group III nitride layers that exhibit sharp layer-to-layer interfaces are provided. According to one aspect, an HVPE reactor includes one or more gas inlet tubes adjacent to the growth zone, thus allowing fine control of the delivery of reactive gases to the substrate surface. According to another aspect, an HVPE reactor includes both a growth zone and a growth interruption zone. According to another aspect, an HVPE reactor includes a slow growth rate gallium source, thus allowing thin layers to be grown. Using the slow growth rate gallium source in conjunction with a conventional gallium source allows a device structure to be fabricated during a single furnace run that includes both thick layers (i.e., utilizing the conventional gallium source) and thin layers (i.e., utilizing the slow growth rate gallium source).
    Type: Grant
    Filed: March 28, 2002
    Date of Patent: March 2, 2010
    Assignee: Technologies and Devices International, Inc.
    Inventors: Denis V. Tsvetkov, Andrey E. Nikolaev, Vladimir A. Dmitriev
  • Patent number: 7611586
    Abstract: An apparatus for growing bulk GaN and AlGaN single crystal boules, preferably using a modified HVPE process, is provided. The single crystal boules typically have a volume in excess of 4 cubic centimeters with a minimum dimension of approximately 1 centimeter. If desired, the bulk material can be doped during growth to achieve n-, i-, or p-type conductivity. In order to have growth cycles of sufficient duration, preferably an extended Ga source is used in which a portion of the Ga source is maintained at a relatively high temperature while most of the Ga source is maintained at a temperature close to, and just above, the melting temperature of Ga. To grow large boules of AlGaN, preferably multiple Al sources are used, the Al sources being sequentially activated to avoid Al source depletion and excessive degradation.
    Type: Grant
    Filed: October 8, 2007
    Date of Patent: November 3, 2009
    Assignee: Technologies and Devices International, Inc.
    Inventors: Yuri V. Melnik, Vitali Soukhoveev, Vladimir Ivantsov, Kaite Tsvetkov, Vladimir A. Dmitriev
  • Publication number: 20090130781
    Abstract: HVPE method for simultaneously fabricating multiple Group III nitride semiconductor structures during a single reactor run. A HVPE reactor includes a reactor tube, a growth zone, a heating element and a plurality of gas blocks. A substrate holder is capable of holding multiple substrates and can be a single or multi-level substrate holder. The gas delivery blocks are independently controllable. Gas flows from the delivery blocks are mixed to provide a substantially uniform gas environment within the growth zone. The substrate holder can be controlled, e.g., rotated and/or tilted, for uniform material growth. Multiple Group III nitride semiconductor structures can be grown on each substrate during a single fabrication run of the HVPE reactor. Growth on different substrates is substantially uniform and can be performed on larger area substrates, such as 3-12? substrates.
    Type: Application
    Filed: November 10, 2008
    Publication date: May 21, 2009
    Applicant: TECHNOLOGIES AND DEVICES INTERNATIONAL, INC.
    Inventors: Vladimir A. Dmitriev, Viacheslav A. Maslennikov, Vitali Soukhoveev, Oleg V. Kovalenkov
  • Publication number: 20090092815
    Abstract: A method and apparatus for growing low defect, optically transparent, colorless, crack-free, substantially flat, single crystal Group III nitride epitaxial layers with a thickness of at least 10 microns is provided. These layers can be grown on large area substrates comprised of Si, SiC, sapphire, GaN, AlN, GaAs, AlGaN and others. In one aspect, the crack-free Group III nitride layers are grown using a modified HVPE technique. If desired, the shape and the stress of Group III nitride layers can be controlled, thus allowing concave, convex and flat layers to be controllably grown. After the growth of the Group III nitride layer is complete, the substrate can be removed and the freestanding Group III nitride layer used as a seed for the growth of a boule of Group III nitride material. The boule can be sliced into individual wafers for use in the fabrication of a variety of semiconductor structures (e.g., HEMTs, LEDs, etc.).
    Type: Application
    Filed: September 22, 2008
    Publication date: April 9, 2009
    Applicant: TECHNOLOGIES AND DEVICES INTERNATIONAL, INC.
    Inventors: Vladimir A. Dmitriev, Yuri V. Melnik
  • Patent number: 7501023
    Abstract: A method and apparatus for growing low defect, optically transparent, colorless, crack-free, substantially flat, single crystal Group III nitride epitaxial layers with a thickness of at least 10 microns is provided. These layers can be grown on large area substrates comprised of Si, SiC, sapphire, GaN, AlN, GaAs, AlGaN and others. In one aspect, the crack-free Group III nitride layers are grown using a modified HVPE technique. If desired, the shape and the stress of Group III nitride layers can be controlled, thus allowing concave, convex and flat layers to be controllably grown. After the growth of the Group III nitride layer is complete, the substrate can be removed and the freestanding Group III nitride layer used as a seed for the growth of a boule of Group III nitride material. The boule can be sliced into individual wafers for use in the fabrication of a variety of semiconductor structures (e.g., HEMTs, LEDs, etc.).
    Type: Grant
    Filed: February 13, 2004
    Date of Patent: March 10, 2009
    Assignee: Technologies and Devices, International, Inc.
    Inventors: Vladimir A. Dmitriev, Yuri V. Melnik
  • Publication number: 20090043185
    Abstract: A flexible biomedical surface electrode comprises an insulating substrate (10), a conductive electrode layer (12) screen-printed on the substrate, and an insulating masking layer (14) on the electrode layer. The masking layer is configured to expose selected regions (16) of the electrode layer. An electrically conductive adhesive gel layer (18) on the masking layer makes electrical contact with the exposed regions of the electrode layer.
    Type: Application
    Filed: February 16, 2007
    Publication date: February 12, 2009
    Applicant: SENSOR TECHNOLOGY AND DEVICES LTD.
    Inventors: Eric Thomas McAdams, John McCune Anderson, James Andrew McLaughlin
  • Publication number: 20080022926
    Abstract: An apparatus for growing bulk GaN and AlGaN single crystal boules, preferably using a modified HVPE process, is provided. The single crystal boules typically have a volume in excess of 4 cubic centimeters with a minimum dimension of approximately 1 centimeter. If desired, the bulk material can be doped during growth to achieve n-, i-, or p-type conductivity. In order to have growth cycles of sufficient duration, preferably an extended Ga source is used in which a portion of the Ga source is maintained at a relatively high temperature while most of the Ga source is maintained at a temperature close to, and just above, the melting temperature of Ga. To grow large boules of AlGaN, preferably multiple Al sources are used, the Al sources being sequentially activated to avoid Al source depletion and excessive degradation.
    Type: Application
    Filed: October 8, 2007
    Publication date: January 31, 2008
    Applicant: TECHNOLOGIES AND DEVICES INTERNATIONAL, INC.
    Inventors: Yuri Melnik, Vitali Soukhoveev, Vladimir Ivantsov, Katie Tsvetkov, Vladimir Dmitriev
  • Patent number: 7279047
    Abstract: An apparatus for growing bulk GaN and AlGaN single crystal boules, preferably using a modified HVPE process, is provided. The single crystal boules typically have a volume in excess of 4 cubic centimeters with a minimum dimension of approximately 1 centimeter. If desired, the bulk material can be doped during growth to achieve n-, i-, or p-type conductivity. In order to have growth cycles of sufficient duration, preferably an extended Ga source is used in which a portion of the Ga source is maintained at a relatively high temperature while most of the Ga source is maintained at a temperature close to, and just above, the melting temperature of Ga. To grow large boules of AlGaN, preferably multiple Al sources are used, the Al sources being sequentially activated to avoid Al source depletion and excessive degradation.
    Type: Grant
    Filed: August 1, 2003
    Date of Patent: October 9, 2007
    Assignee: Technologies and Devices, International, Inc.
    Inventors: Yuri V. Melnik, Vitali Soukhoveev, Vladimir Ivantsov, Katie Tsvetkov, Vladimir A. Dmitriev
  • Patent number: 6955719
    Abstract: A method for fabricating semiconductor devices with thin (e.g., submicron) and/or thick (e.g., between 1 micron and 100 microns thick) Group III nitride layers during a single epitaxial run is provided, the layers exhibiting sharp layer-to-layer interfaces. According to one aspect, an HVPE reactor is provided that includes one or more gas inlet tubes adjacent to the growth zone, thus allowing fine control of the delivery of reactive gases to the substrate surface. According to another aspect, an HVPE reactor is provided that includes at least one growth zone as well as a growth interruption zone. According to another aspect, an HVPE reactor is provided that includes extended growth sources such as slow growth rate gallium source with a reduced gallium surface area. According to another aspect, an HVPE reactor is provided that includes multiple sources of the same material, for example Mg, which can be used sequentially to prolong a growth cycle.
    Type: Grant
    Filed: July 18, 2003
    Date of Patent: October 18, 2005
    Assignee: Technologies and Devices, Inc.
    Inventors: Vladimir A. Dmitriev, Denis V. Tsvetkov, Aleksei Pechnikov, Yuri V. Melnik, Aleksandr Usikov, Oleg Kovalenkov
  • Patent number: 6936357
    Abstract: Bulk GaN and AlGaN single crystal boules, preferably fabricated using a modified HVPE process, are provided. The single crystal boules typically have a volume in excess of 4 cubic centimeters with a minimum dimension of approximately 1 centimeter. If desired, the bulk material can be doped during growth, for example to achieve n-, i-, or p-type conductivity.
    Type: Grant
    Filed: January 31, 2003
    Date of Patent: August 30, 2005
    Assignee: Technologies and Devices International, Inc.
    Inventors: Yuri V. Melnik, Vitali Soukhoveev, Vladimir Ivantsov, Katie Tsvetkov, Vladimir A. Dmitriev
  • Patent number: 6849862
    Abstract: A method for fabricating p-type, i-type, and n-type III-V compound materials using HVPE techniques is provided. If desired, these materials can be grown directly onto the surface of a substrate without the inclusion of a low temperature buffer layer. By growing multiple layers of differing conductivity, a variety of different device structures can be fabricated including simple p-n homojunction and heterojunction structures as well as more complex structures in which the p-n junction, either homojunction or heterojunction, is interposed between a pair of wide band gap material layers. The provided method can also be used to fabricate a device in which a non-continuous quantum dot layer is grown within the p-n junction. The quantum dot layer is comprised of a plurality of quantum dot regions, each of which is typically between approximately 20 and 30 Angstroms per axis. The quantum dot layer is preferably comprised of AlxByInzGa1-x-y-zN, InGaN1-a-bPaAsb, or AlxByInzGa1-x-y-zN1-a-bPaAsb.
    Type: Grant
    Filed: May 18, 2001
    Date of Patent: February 1, 2005
    Assignee: Technologies and Devices International, Inc.
    Inventors: Audrey E. Nikolaev, Yuri V. Melnik, Konstantin V. Vassilevski, Vladimir A. Dmitriev
  • Patent number: 6706119
    Abstract: A method and apparatus for fabricating thin Group III nitride layers as well as Group III nitride layers that exhibit sharp layer-to-layer interfaces are provided. According to one aspect, an HVPE reactor includes one or more gas inlet tubes adjacent to the growth zone, thus allowing fine control of the delivery of reactive gases to the substrate surface. According to another aspect, an HVPE reactor includes both a growth zone and a growth interruption zone. According to another aspect, an HVPE reactor includes a slow growth rate gallium source, thus allowing thin layers to be grown. Using the slow growth rate gallium source in conjunction with a conventional gallium source allows a device structure to be fabricated during a single furnace run that includes both thick layers (i.e., utilizing the conventional gallium source) and thin layers (i.e., utilizing the slow growth rate gallium source).
    Type: Grant
    Filed: March 28, 2002
    Date of Patent: March 16, 2004
    Assignee: Technologies and Devices International, Inc.
    Inventors: Denis V. Tsvetkov, Andrey E. Nikolaev, Vladimir A. Dmitriev
  • Publication number: 20040026704
    Abstract: A method for fabricating p-type, i-type, and n-type III-V compound materials using HVPE techniques is provided. If desired, these materials can be grown directly onto the surface of a substrate without the inclusion of a low temperature buffer layer. By growing multiple layers of differing conductivity, a variety of different device structures can be fabricated including simple p-n homojunction and heterojunction structures as well as more complex structures in which the p-n junction, either homojunction or heterojunction, is interposed between a pair of wide band gap material layers. The provided method can also be used to fabricate a device in which a non-continuous quantum dot layer is grown within the p-n junction. The quantum dot layer is comprised of a plurality of quantum dot regions, each of which is typically between approximately 20 and 30 Angstroms per axis.
    Type: Application
    Filed: May 18, 2001
    Publication date: February 12, 2004
    Applicant: Technologies & Devices Int.'s Inc.
    Inventors: Audrey E. Nikolaev, Yuri V. Melnik, Konstantin V. Vassilevski, Vladimir A. Dmitriev
  • Publication number: 20030226496
    Abstract: Bulk GaN and AlGaN single crystal boules, preferably fabricated using a modified HVPE process, are provided. The single crystal boules typically have a volume in excess of 4 cubic centimeters with a minimum dimension of approximately 1 centimeter. If desired, the bulk material can be doped during growth, for example to achieve n-, i-, or p-type conductivity.
    Type: Application
    Filed: January 31, 2003
    Publication date: December 11, 2003
    Applicant: Technologies and Devices International, Inc.
    Inventors: Yuri V. Melnik, Vitali Soukhoveev, Vladimir Ivantsov, Katie Tsvetkov, Vladimir A. Dmitriev
  • Patent number: 6660083
    Abstract: A method and apparatus for fabricating thin Group III nitride layers as well as Group III nitride layers that exhibit sharp layer-to-layer interfaces are provided. According to one aspect, an HVPE reactor includes one or more gas inlet tubes adjacent to the growth zone, thus allowing fine control of the delivery of reactive gases to the substrate surface. According to another aspect, an HVPE reactor includes both a growth zone and a growth interruption zone. According to another aspect, an HVPE reactor includes a slow growth rate gallium source, thus allowing thin layers to be grown. Using the slow growth rate gallium source in conjunction with a conventional gallium source allows a device structure to be fabricated during a single furnace run that includes both thick layers (i.e., utilizing the conventional gallium source) and thin layers (i.e., utilizing the slow growth rate gallium source).
    Type: Grant
    Filed: March 28, 2002
    Date of Patent: December 9, 2003
    Assignee: Technologies and Devices International, Inc.
    Inventors: Denis V. Tsvetkov, Andrey E. Nikolaev, Vladimir A. Dmitriev
  • Patent number: 6656272
    Abstract: A method and apparatus for fabricating thin Group III nitride layers as well as Group III nitride layers that exhibit sharp layer-to-layer interfaces are provided. According to one aspect, an HVPE reactor includes one or more gas inlet tubes adjacent to the growth zone, thus allowing fine control of the delivery of reactive gases to the substrate surface. According to another aspect, an HVPE reactor includes both a growth zone and a growth interruption zone. According to another aspect, an HVPE reactor includes a slow growth rate gallium source, thus allowing thin layers to be grown. Using the slow growth rate gallium source in conjunction with a conventional gallium source allows a device structure to be fabricated during a single furnace run that includes both thick layers (i.e., utilizing the conventional gallium source) and thin layers (i.e., utilizing the slow growth rate gallium source).
    Type: Grant
    Filed: March 28, 2002
    Date of Patent: December 2, 2003
    Assignee: Technologies and Devices International, Inc.
    Inventors: Denis V. Tsvetkov, Andrey E. Nikolaev, Vladimir A. Dmitriev