Patents Assigned to TECHNOLOGIES NUMETRIX INC.
  • Patent number: 8520058
    Abstract: The concept includes projecting at the object surface, along a first optical axis, two or more two-dimensional (2D) images containing together one or more distinct wavelength bands. The wavelength bands vary in intensity along a first image axis, forming a pattern, within at least one of the projected images. Each projected image generates a reflected image along a second optical axis. The 3D surface data is obtained by comparing the object data with calibration data, which calibration data was obtained by projecting the same images at a calibration reference surface, for instance a planar surface, for a plurality of known positions along the z-axis. Provided that the z-axis is not orthogonal to the second optical axis, the z-axis coordinate at each location on the object surface can be found if the light intensity combinations of all predefined light intensity patterns are linearly independent along the corresponding z-axis.
    Type: Grant
    Filed: May 4, 2012
    Date of Patent: August 27, 2013
    Assignee: Technologies Numetrix Inc.
    Inventors: Simon Rodrigue, Francois Busque
  • Patent number: 8462357
    Abstract: The concept includes projecting at the object surface, along a first optical axis, two or more two-dimensional (2D) images containing together one or more distinct wavelength bands. The wavelength bands vary in intensity along a first image axis, forming a pattern, within at least one of the projected images. Each projected image generates a reflected image along a second optical axis. The 3D surface data is obtained by comparing the object data with calibration data, which calibration data was obtained by projecting the same images at a calibration reference surface, for instance a planar surface, for a plurality of known positions along the z-axis. Provided that the z-axis is not orthogonal to the second optical axis, the z-axis coordinate at each location on the object surface can be found if the light intensity combinations of all predefined light intensity patterns are linearly independent along the corresponding z-axis.
    Type: Grant
    Filed: May 4, 2012
    Date of Patent: June 11, 2013
    Assignee: Technologies Numetrix Inc.
    Inventors: Simon Rodrigue, Francois Busque
  • Publication number: 20120229606
    Abstract: The concept includes projecting at the object surface, along a first optical axis, two or more two-dimensional (2D) images containing together one or more distinct wavelength bands. The wavelength bands vary in intensity along a first image axis, forming a pattern, within at least one of the projected images. Each projected image generates a reflected image along a second optical axis. The 3D surface data is obtained by comparing the object data with calibration data, which calibration data was obtained by projecting the same images at a calibration reference surface, for instance a planar surface, for a plurality of known positions along the z-axis. Provided that the z-axis is not orthogonal to the second optical axis, the z-axis coordinate at each location on the object surface can be found if the light intensity combinations of all predefined light intensity patterns are linearly independent along the corresponding z-axis.
    Type: Application
    Filed: May 4, 2012
    Publication date: September 13, 2012
    Applicant: TECHNOLOGIES NUMETRIX INC.
    Inventors: Simon RODRIGUE, François BUSQUE
  • Publication number: 20120229816
    Abstract: The concept includes projecting at the object surface, along a first optical axis, two or more two-dimensional (2D) images containing together one or more distinct wavelength bands. The wavelength bands vary in intensity along a first image axis, forming a pattern, within at least one of the projected images. Each projected image generates a reflected image along a second optical axis. The 3D surface data is obtained by comparing the object data with calibration data, which calibration data was obtained by projecting the same images at a calibration reference surface, for instance a planar surface, for a plurality of known positions along the z-axis. Provided that the z-axis is not orthogonal to the second optical axis, the z-axis coordinate at each location on the object surface can be found if the light intensity combinations of all predefined light intensity patterns are linearly independent along the corresponding z-axis.
    Type: Application
    Filed: May 4, 2012
    Publication date: September 13, 2012
    Applicant: TECHNOLOGIES NUMETRIX INC.
    Inventors: Simon RODRIGUE, François BUSQUE