Patents Assigned to Telaris Inc.
  • Patent number: 9933554
    Abstract: A laser resonator includes an active material, which amplifies light associated with an optical gain of the resonator, and passive materials disposed in proximity with the active material. The resonator oscillates over one or more optical modes, each of which corresponds to a particular spatial energy distribution and resonant frequency. Based on a characteristic of the passive materials, for the particular spatial energy distribution corresponding to at least one of the optical modes, a preponderant portion of optical energy is distributed apart from the active material. The passive materials may include a low loss material, which stores the preponderant optical energy portion distributed apart from the active material, and a buffer material disposed between the low loss material and the active material, which controls a ratio of the optical energy stored in the low loss material to a portion of the optical energy in the active material.
    Type: Grant
    Filed: February 5, 2016
    Date of Patent: April 3, 2018
    Assignees: CALIFORNIA INSTITUTE OF TECHNOLOGY, TELARIS INC.
    Inventors: Christos T. Santis, Scott T. Steger, Amnon Yariv, Naresh Satyan, George Rakuljic
  • Patent number: 9575182
    Abstract: A detection apparatus and method for FMCW LIDAR employ signals whose frequencies are modified so that low-cost and low-speed photodetector arrays, such as CCD or CMOS cameras, can be employed for range detection. The LIDAR is designed to measure the range z to a target and includes a single mode swept frequency laser (SFL), whose optical frequency is varied with time, as a result of which, a target beam which is reflected back by the target is shifted in frequency from a reference beam by an amount that is proportional to the relative range z to the target. The reflected target beam is combined with the reference beam and detected by the photodetector array. By first modulating at least one of the target and reference beams such that the difference between the frequencies of the reflected target beam and the reference beam is reduced to a level that is within the bandwidth of the photodetector array, the need for high-speed detector arrays for full-field imaging is obviated.
    Type: Grant
    Filed: December 30, 2014
    Date of Patent: February 21, 2017
    Assignees: California Institute of Technology, Telaris Inc.
    Inventors: Naresh Satyan, Arseny Vasilyev, George Rakuljic, Amnon Yariv
  • Patent number: 9465110
    Abstract: A detection apparatus and method for FMCW LIDAR employ signals that are modified so that low-cost and low-speed photodetector arrays, such as CCD or CMOS cameras, can be employed for range detection. The LIDAR is designed to measure the range to one or more targets and includes a single mode swept frequency laser (SFL), whose optical frequency is varied with time, as a result of which, a target beam which is reflected back by the one or more targets is shifted in frequency from a reference beam by an amount that is proportional to the relative range to the one or more targets. The reflected target beam(s) is/are combined with the reference beam and detected by the photodetector array. In the case of a sparse number of targets to be detected, Compressive Sensing (CS) techniques can be employed by a processor to reduce the number of measurements necessary to determine the range of each target.
    Type: Grant
    Filed: October 9, 2013
    Date of Patent: October 11, 2016
    Assignees: TELARIS INC., CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Naresh Satyan, Arseny Vasilyev, Amnon Yariv, George Rakuljic
  • Publication number: 20150177380
    Abstract: A detection apparatus and method for FMCW LIDAR employ signals whose frequencies are modified so that low-cost and low-speed photodetector arrays, such as CCD or CMOS cameras, can be employed for range detection. The LIDAR is designed to measure the range z to a target and includes a single mode swept frequency laser (SFL), whose optical frequency is varied with time, as a result of which, a target beam which is reflected back by the target is shifted in frequency from a reference beam by an amount that is proportional to the relative range z to the target. The reflected target beam is combined with the reference beam and detected by the photodetector array. By first modulating at least one of the target and reference beams such that the difference between the frequencies of the reflected target beam and the reference beam is reduced to a level that is within the bandwidth of the photodetector array, the need for high-speed detector arrays for full-field imaging is obviated.
    Type: Application
    Filed: December 30, 2014
    Publication date: June 25, 2015
    Applicants: California Institute of Technology, Telaris Inc.
    Inventors: Naresh Satyan, Arseny Vasilyev, George Rakuljic, Amnon Yariv
  • Patent number: 8953240
    Abstract: A chirped diode laser (ChDL) is employed for seeding optical amplifiers and/or dissimilar optical paths, which simultaneously suppresses stimulated Brillouin scattering (SBS) and enables coherent combination. The seed spectrum will appear broadband to suppress the SBS, but the well-defined chirp will have the coherence and duration to allow the active phasing of multiple amplifiers and/or dissimilar optical paths. The phasing is accomplished without optical path-length matching by interfering each amplifier output with a reference, processing the resulting signal with a phase lock loop, and using the error signal to drive an acousto-optic frequency shifter at the front end of each optical amplifier and/or optical path.
    Type: Grant
    Filed: August 3, 2012
    Date of Patent: February 10, 2015
    Assignee: Telaris, Inc.
    Inventor: George Rakuljic
  • Patent number: 8928865
    Abstract: A detection apparatus and method for FMCW LIDAR employ signals whose frequencies are modified so that low-cost and low-speed photodetector arrays can be employed for range detection. The LIDAR includes a single mode swept frequency laser (SFL), whose optical frequency is varied with time, as a result of which, a target beam reflected back by the target is shifted in frequency from a reference beam by an amount that is proportional to the relative range z to the target. The reflected target beam is combined with the reference beam and detected by the photodetector array. The difference between the frequencies of the reflected target beam and the reference beam is reduced to a level that is within the bandwidth of the photodetector array by first modulating the target and/or reference beam.
    Type: Grant
    Filed: August 3, 2012
    Date of Patent: January 6, 2015
    Assignee: Telaris, Inc.
    Inventor: George Rakuljic
  • Patent number: 8792524
    Abstract: This invention relates to opto-electronic systems using semiconductor lasers driven by optical phase-locked loops that control the laser's optical phase and frequency. Feedback control provides a means for precise, wideband control of optical frequency and phase, augmented further by four wave mixing stages and digitally stitched independent optical waveforms for enhanced tunability.
    Type: Grant
    Filed: April 19, 2012
    Date of Patent: July 29, 2014
    Assignees: Telaris Inc., California Institute of Technology
    Inventors: George Rakuljic, Naresh Satyan, Arseny Vasilyev, Amnon Yariv
  • Publication number: 20140104593
    Abstract: A detection apparatus and method for FMCW LIDAR employ signals that are modified so that low-cost and low-speed photodetector arrays, such as CCD or CMOS cameras, can be employed for range detection. The LIDAR is designed to measure the range to one or more targets and includes a single mode swept frequency laser (SFL), whose optical frequency is varied with time, as a result of which, a target beam which is reflected back by the one or more targets is shifted in frequency from a reference beam by an amount that is proportional to the relative range to the one or more targets. The reflected target beam(s) is/are combined with the reference beam and detected by the photodetector array. In the case of a sparse number of targets to be detected, Compressive Sensing (CS) techniques can be employed by a processor to reduce the number of measurements necessary to determine the range of each target.
    Type: Application
    Filed: October 9, 2013
    Publication date: April 17, 2014
    Applicants: TELARIS INC., CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Naresh Satyan, Arseny Vasilyev, Amnon Yariv, George Rakuljic
  • Patent number: 8175126
    Abstract: This invention relates to opto-electronic systems using semiconductor lasers driven by optical phase-locked loops that control the laser's optical phase and frequency. Feedback control provides a means for precise, wideband control of optical frequency and phase, augmented further by four wave mixing stages and digitally stitched independent optical waveforms for enhanced tunability.
    Type: Grant
    Filed: August 13, 2009
    Date of Patent: May 8, 2012
    Assignees: Telaris, Inc., California Institute of Technology
    Inventors: George Rakuljic, Naresh Satyan, Arseny Vasilyev, Ammon Yariv
  • Patent number: 7848370
    Abstract: Semiconductor diode lasers are phase-locked by direct current injection and combined to form a single coherent output beam. The optical power is amplified by use of fiber amplifiers. Electronically control of the optical phases of each emitter enables power efficient combining of output beams to be maintained under dynamic conditions.
    Type: Grant
    Filed: January 25, 2008
    Date of Patent: December 7, 2010
    Assignee: Telaris Inc.
    Inventors: Anthony S. Kewitsch, George A. Rakuljic
  • Publication number: 20090296751
    Abstract: Semiconductor diode lasers are phase-locked by direct current injection and combined to form a single coherent output beam. The optical power is amplified by use of fiber amplifiers. Electronically control of the optical phases of each emitter enables power efficient combining of output beams to be maintained under dynamic conditions.
    Type: Application
    Filed: January 25, 2008
    Publication date: December 3, 2009
    Applicant: TELARIS INC.
    Inventors: ANTHONY S. KEWITSCH, GEORGE A. RAKULJIC
  • Publication number: 20090245306
    Abstract: This invention relates to opto-electronic systems using semiconductor lasers driven by optical phase-locked loops that control the laser's optical phase and frequency. Feedback control provides a means for precise control of optical frequency and phase, including the ability for broadband electronic tunability of optical signals and the cascading of multiple lasers for enhanced tunability and coherent combining for increased output power.
    Type: Application
    Filed: April 1, 2009
    Publication date: October 1, 2009
    Applicant: TELARIS INC.
    Inventor: George A. Rakuljic
  • Publication number: 20060239312
    Abstract: This invention relates to opto-electronic systems using semiconductor lasers driven by feedback control circuits that control the laser's optical phase and frequency. Feedback control provides a means for coherent phased laser array operation and reduced phase noise. Systems and methods to coherently combine a multiplicity of lasers driven to provide high power coherent outputs with tailored spectral and wavefront characteristics are disclosed. Systems of improving the phase noise characteristics of one or more semiconductor lasers are further disclosed.
    Type: Application
    Filed: April 20, 2006
    Publication date: October 26, 2006
    Applicant: Telaris Inc.
    Inventors: Anthony Kewitsch, George Rakuljic, Amnon Yariv