Patents Assigned to Tenksolar, Inc.
  • Patent number: 9773933
    Abstract: In an embodiment, a solar energy system includes multiple photovoltaic modules, each oriented substantially at a same angle relative to horizontal. The angle is independent of a latitude of an installation site of the solar energy system and is greater than or equal to 15 degrees. The solar energy system defines a continuous area within a perimeter of the solar energy system. The solar energy system is configured to capture at the photovoltaic modules substantially all light incoming towards the continuous area over an entire season.
    Type: Grant
    Filed: August 1, 2013
    Date of Patent: September 26, 2017
    Assignee: TENKSOLAR, INC.
    Inventors: Dallas W. Meyer, Lowell J. Berg, Kurt Korkowski, Lance E. Stover, Thomas L. Murnan, Orville Dodd
  • Patent number: 9768725
    Abstract: One example embodiment includes a PV module comprising a conductive backsheet, a substantially transparent front plate, a plurality of PV cells, a plurality of conductive spacers, and a power conversion device. The PV cells can be disposed between the conductive backsheet and the front plate and can be arranged in a plurality of rows. The PV cells within each row can be connected to each other in parallel and the rows can be connected in series. The PV cells can be interconnected between the conductive spacers. The power conversion device can be redundantly connected to the PV cells via a last conductive spacer connected to a last row. The power conversion device can substantially maintain a maximum peak power of the PV module and can convert a lower voltage collectively generated by the PV cells to a predetermined stepped up voltage greater than or equal to 12 volts.
    Type: Grant
    Filed: November 4, 2014
    Date of Patent: September 19, 2017
    Assignee: TENKSOLAR, INC.
    Inventor: Dallas W. Meyer
  • Patent number: 9543890
    Abstract: In one example, a photovoltaic module includes a plurality of discrete photovoltaic cells arranged in a plurality of cell rows, and a substantially electrically conductive and continuous area backsheet. The photovoltaic cells in each cell row are electrically connected in parallel to each other. The cell rows are electrically connected in series to each other and include a first row and a last row. The backsheet forms a current return path between the first and last rows. The photovoltaic cells are configured such that, in operation, current flows substantially uni-directionally through the plurality of photovoltaic cells between the first row and the last row.
    Type: Grant
    Filed: October 14, 2013
    Date of Patent: January 10, 2017
    Assignee: TENKSOLAR, INC.
    Inventors: Dallas W. Meyer, Lowell J. Berg, Forrest C. Meyer, Raymond W. Knight, Steven E. Wheeler, John P. Novotny
  • Patent number: 9299861
    Abstract: In an embodiment, a photovoltaic system includes multiple photovoltaic modules and a module-to-module bus. Each photovoltaic module defines a first end and a second end opposite the first end. Each photovoltaic module includes multiple photovoltaic cells and multiple converters. Energy generated by each photovoltaic cell has multiple paths through the photovoltaic cells to the second end. The converters are electrically coupled to the photovoltaic cells at the second end such that energy generated by each photovoltaic cell is receivable at any of the converters. The module-to-module bus is electrically coupled to each of the photovoltaic modules. The module-to-module bus has an output. Energy generated by each photovoltaic module is receivable at the output independent of any other of the photovoltaic modules.
    Type: Grant
    Filed: October 31, 2012
    Date of Patent: March 29, 2016
    Assignee: TENKSOLAR, INC.
    Inventors: Dallas W. Meyer, Lowell Berg, John Novotny, Shady Gross, Forrest C. Meyer
  • Patent number: 8933320
    Abstract: One example embodiment includes a PV module comprising a conductive backsheet, a substantially transparent front plate, a plurality of PV cells, a plurality of conductive spacers, and a power conversion device. The PV cells can be disposed between the conductive backsheet and the front plate and can be arranged in a plurality of rows. The PV cells within each row can be connected to each other in parallel and the rows can be connected in series. The PV cells can be interconnected between the conductive spacers. The power conversion device can be redundantly connected to the PV cells via a last conductive spacer connected to a last row. The power conversion device can substantially maintain a maximum peak power of the PV module and can convert a lower voltage collectively generated by the PV cells to a predetermined stepped up voltage greater than or equal to 12 volts.
    Type: Grant
    Filed: January 21, 2009
    Date of Patent: January 13, 2015
    Assignee: Tenksolar, Inc.
    Inventor: Dallas W. Meyer
  • Patent number: 8829330
    Abstract: In an example, a solar energy system includes multiple PV modules, multiple reflectors, and a racking assembly. Each of the reflectors is positioned opposite a corresponding one of the PV modules. The racking assembly mechanically interconnects the PV modules and the reflectors to form an interconnected system. The racking assembly defines gaps within the racking assembly and between adjacent PV modules and reflectors. The interconnected system includes multiple contact points associated with the gaps. The gaps and contact points configure the interconnected system to accommodate surface unevenness of an installation surface up to a predetermined surface unevenness.
    Type: Grant
    Filed: August 10, 2011
    Date of Patent: September 9, 2014
    Assignee: Tenksolar, Inc.
    Inventors: Dallas W. Meyer, Lowell J. Berg, Lance E. Stover, Orville D. Dodd, Thomas L. Murnan
  • Patent number: 8828778
    Abstract: A method of forming a longitudinally continuous photovoltaic (PV) module includes arranging strips of thin-film PV material to be spaced apart from and substantially parallel to each other. The method also includes laminating a bottom layer to a first surface of the strips of thin-film PV material, the bottom layer including multiple bottom layer conductive strips. The method also includes laminating a top layer to a second surface of the strips of thin-film PV material opposite the first surface, the top layer including multiple top layer conductive strips. Laminating the bottom layer to the first surface and laminating the top layer to the second surface includes serially and redundantly interconnecting the strips of thin-film PV material together by connecting each one of the strips of thin-film PV material to a different one of the bottom layer conductive strips and a different one of the top layer conductive strips.
    Type: Grant
    Filed: May 31, 2012
    Date of Patent: September 9, 2014
    Assignee: Tenksolar, Inc.
    Inventor: Dallas W. Meyer
  • Publication number: 20140174535
    Abstract: In an example, a solar energy system includes multiple PV modules, multiple reflectors, and a racking assembly. Each of the reflectors is positioned opposite a corresponding one of the PV modules. The racking assembly mechanically interconnects the PV modules and the reflectors to form an interconnected system. The racking assembly defines gaps within the racking assembly and between adjacent PV modules and reflectors. The interconnected system includes multiple contact points associated with the gaps. The gaps and contact points configure the interconnected system to accommodate surface unevenness of an installation surface up to a predetermined surface unevenness.
    Type: Application
    Filed: February 26, 2014
    Publication date: June 26, 2014
    Applicant: TENKSOLAR, INC.
    Inventors: Dallas W. Meyer, Lowell J. Berg, Lance E. Stover, Orville D. Dodd, Thomas L. Murnan
  • Patent number: 8748727
    Abstract: One example embodiment includes a PV module comprising a conductive backsheet, a non-conductive layer disposed on the conductive backsheet, a plurality of PV cells arranged in rows and collectively generating a first power output characterized by a first voltage, and a power conversion device. Each of the rows can include two or more PV cells. The PV cells within each row can be connected to each other in parallel. The rows can be connected in series. A top row can be connected to the conductive backsheet. The power conversion device can be redundantly connected to a bottom row and to the conductive backsheet to form a complete circuit. The power conversion device can convert the first power output to a second power output characterized by a second voltage that is larger than the first voltage. The power conversion device can also maintain peak power of the PV cells.
    Type: Grant
    Filed: January 21, 2009
    Date of Patent: June 10, 2014
    Assignee: Tenksolar, Inc.
    Inventor: Dallas W. Meyer
  • Publication number: 20140035373
    Abstract: In one example, a photovoltaic module includes a plurality of discrete photovoltaic cells arranged in a plurality of cell rows, and a substantially electrically conductive and continuous area backsheet. The photovoltaic cells in each cell row are electrically connected in parallel to each other. The cell rows are electrically connected in series to each other and include a first row and a last row. The backsheet forms a current return path between the first and last rows. The photovoltaic cells are configured such that, in operation, current flows substantially uni-directionally through the plurality of photovoltaic cells between the first row and the last row.
    Type: Application
    Filed: October 14, 2013
    Publication date: February 6, 2014
    Applicant: TenKsolar, Inc.
    Inventors: Dallas W. Meyer, Lowell J. Berg, Forrest C. Meyer, Raymond W. Knight, Steven E. Wheeler, John P. Novotny
  • Publication number: 20130312812
    Abstract: In an embodiment, a solar energy system includes multiple photovoltaic modules, each oriented substantially at a same angle relative to horizontal. The angle is independent of a latitude of an installation site of the solar energy system and is greater than or equal to 15 degrees. The solar energy system defines a continuous area within a perimeter of the solar energy system. The solar energy system is configured to capture at the photovoltaic modules substantially all light incoming towards the continuous area over an entire season.
    Type: Application
    Filed: August 1, 2013
    Publication date: November 28, 2013
    Applicant: Tenksolar, Inc
    Inventors: Dallas W. Meyer, Lowell J. Berg, Kurt Korkowski, Lance E. Stover, Thomas L. Murnan, Orville Dodd
  • Patent number: 8563847
    Abstract: In one example, a photovoltaic module includes a plurality of discrete photovoltaic cells arranged in a plurality of cell rows, and a substantially electrically conductive and continuous area backsheet. The photovoltaic cells in each cell row are electrically connected in parallel to each other. The cell rows are electrically connected in series to each other and include a first row and a last row. The backsheet forms a current return path between the first and last rows. The photovoltaic cells are configured such that, in operation, current flows substantially uni-directionally through the plurality of photovoltaic cells between the first row and the last row.
    Type: Grant
    Filed: June 15, 2010
    Date of Patent: October 22, 2013
    Assignee: Tenksolar, Inc
    Inventors: Dallas W. Meyer, Lowell J. Berg, Forrest C. Meyer, Raymond W. Knight, Steven E. Wheeler, John P. Novotny
  • Publication number: 20130062956
    Abstract: In an embodiment, a photovoltaic system includes multiple photovoltaic modules and a module-to-module bus. Each photovoltaic module defines a first end and a second end opposite the first end. Each photovoltaic module includes multiple photovoltaic cells and multiple converters. Energy generated by each photovoltaic cell has multiple paths through the photovoltaic cells to the second end. The converters are electrically coupled to the photovoltaic cells at the second end such that energy generated by each photovoltaic cell is receivable at any of the converters. The module-to-module bus is electrically coupled to each of the photovoltaic modules. The module-to-module bus has an output. Energy generated by each photovoltaic module is receivable at the output independent of any other of the photovoltaic modules.
    Type: Application
    Filed: October 31, 2012
    Publication date: March 14, 2013
    Applicant: tenKsolar, Inc.
    Inventor: tenKsolar, Inc.
  • Patent number: 8212139
    Abstract: In some embodiments, a photovoltaic module includes an active layer, a top layer, and a bottom layer. The active layer includes a plurality of strips of thin-film PV material that are arranged spaced apart from and substantially parallel to each other. The top layer is disposed above the active layer and includes a substantially transparent film. The bottom layer is disposed below the active layer, the bottom layer including a conductive backsheet configured to form a current return path for the strips of thin-film PV material. The PV module further includes means for serially and redundantly interconnecting the strips of thin-film PV material together.
    Type: Grant
    Filed: January 8, 2010
    Date of Patent: July 3, 2012
    Assignee: Tenksolar, Inc.
    Inventor: Dallas W. Meyer
  • Publication number: 20100212720
    Abstract: In one embodiment, a solar energy system includes a plurality of module rows and a plurality of reflector rows. Each module row includes a plurality of PV modules. Each PV module includes a plurality of PV cells arranged in a plurality of cell rows, the PV cells in each cell row being electrically connected in parallel to each other, and the plurality of cell rows being electrically connected in series to each other. Each reflector row includes a plurality of reflectors. The reflector rows are interposed between the module rows such that each reflector row is mechanically interconnected between two adjacent module rows and is arranged to reflect light having some incident angles on to one of the two adjacent module rows.
    Type: Application
    Filed: February 23, 2010
    Publication date: August 26, 2010
    Applicant: TENKSOLAR, INC.
    Inventors: Dallas W. Meyer, Lowell J. Berg, Thomas L. Murnan, Orville D. Dodd
  • Publication number: 20100131108
    Abstract: In some embodiments, a photovoltaic module includes an active layer, a top layer, and a bottom layer. The active layer includes a plurality of strips of thin-film PV material that are arranged spaced apart from and substantially parallel to each other. The top layer is disposed above the active layer and includes a substantially transparent film. The bottom layer is disposed below the active layer, the bottom layer including a conductive backsheet configured to form a current return path for the strips of thin-film PV material. The PV module further includes means for serially and redundantly interconnecting the strips of thin-film PV material together.
    Type: Application
    Filed: January 8, 2010
    Publication date: May 27, 2010
    Applicant: TENKSOLAR, INC
    Inventor: Dallas W. Meyer
  • Publication number: 20090183764
    Abstract: One example embodiment includes a detachable louver system comprising primary louvers and a frame. The primary louvers are arranged substantially parallel to each other and are configured to reflect light rays incident on the primary louvers onto photovoltaic areas of a photovoltaic module. The frame is configured to support the primary louvers and to removably couple the detachable louver system to the photovoltaic module.
    Type: Application
    Filed: January 21, 2009
    Publication date: July 23, 2009
    Applicant: TENKSOLAR, INC
    Inventor: Dallas W. Meyer
  • Publication number: 20090183763
    Abstract: One example embodiment includes a PV module comprising a conductive backsheet, a non-conductive layer disposed on the conductive backsheet, a plurality of PV cells arranged in rows and collectively generating a first power output characterized by a first voltage, and a power conversion device. Each of the rows can include two or more PV cells. The PV cells within each row can be connected to each other in parallel. The rows can be connected in series. A top row can be connected to the conductive backsheet. The power conversion device can be redundantly connected to a bottom row and to the conductive backsheet to form a complete circuit. The power conversion device can convert the first power output to a second power output characterized b a second voltage that is larger than the first voltage. The power conversion device can also maintain peak power of the PV cells.
    Type: Application
    Filed: January 21, 2009
    Publication date: July 23, 2009
    Applicant: TENKSOLAR, INC
    Inventor: Dallas W. Meyer
  • Publication number: 20090183760
    Abstract: One example embodiment includes a PV module comprising a conductive backsheet, a substantially transparent front plate, a plurality of PV cells, a plurality of conductive spacers, and a power conversion device. The PV cells can be disposed between the conductive backsheet and the front plate and can be arranged in a plurality of rows. The PV cells within each row can be connected to each other in parallel and the rows can be connected in series. The PV cells can be interconnected between the conductive spacers. The power conversion device can be redundantly connected to the PV cells via a last conductive spacer connected to a last row. The power conversion device can substantially maintain a maximum peak power of the PV module and can convert a lower voltage collectively generated by the PV cells to a predetermined stepped up voltage greater than or equal to 12 volts.
    Type: Application
    Filed: January 21, 2009
    Publication date: July 23, 2009
    Applicant: TENKSOLAR INC
    Inventor: Dallas W. Meyer