Abstract: In one exemplary embodiment, curved sheet pile is driven underneath an existing conduit using a pile driver guided hydraulically by an excavator or other heavy machinery. By vibrating the curved sheet piles, the soil is placed in suspension, which allows the piles to be directed through the soil along an arcuate path that has a curvature that substantially matches the radius of curvature of the piles. Once the pile is positioned as desired, each individual pile sheet can be welded to one another to form a unitary structure. In one exemplary embodiment, the curved sheet pile is inserted beneath a conduit using a vibratory pile driver that rotates about a fixed pivot element on an excavator or other heavy machine for positioning the pile driver to advance the curved sheet pile along a fixed arc.
Abstract: In one exemplary embodiment, curved sheet pile is driven underneath an existing conduit using a pile driver guided hydraulically by an excavator or other heavy machinery. By vibrating the curved sheet piles, the soil is placed in suspension, which allows the piles to be directed through the soil along an arcuate path that has a curvature that substantially matches the radius of curvature of the piles. Once the pile is positioned as desired, each individual pile sheet can be welded to one another to form a unitary structure. In one exemplary embodiment, the curved sheet pile is inserted beneath a conduit using a vibratory pile driver that rotates about a fixed pivot element on an excavator or other heavy machine for positioning the pile driver to advance the curved sheet pile along a fixed arc.
Abstract: In one exemplary embodiment, the present invention includes a plurality of individual curved sheet piles that are positioned beneath an underground conduit, such as a raceway, to support the conduit during excavation. In one exemplary embodiment, the individual sections of curved sheet pile are interfit and/or interconnected. This allows the individual sections to work in combination with one another to support the conduit. Specifically, opposing ends of a length of interfit and/or interconnected curved sheet piles extend into unexcavated soil on both sides of an excavated hole to form a bridge across the hole that supports the conduit and any soil or other subterranean material positioned above the curved sheet pile.
Abstract: In one exemplary embodiment, curved sheet pile is driven underneath an existing conduit using a pile driver guided hydraulically by an excavator or other heavy machinery. By vibrating the curved sheet piles, the soil is placed in suspension, which allows the piles to be directed through the soil along an arcuate path that has a curvature that substantially matches the radius of curvature of the piles. Once the pile is positioned as desired, each individual pile sheet can be welded to one another to form a unitary structure. In one exemplary embodiment, the curved sheet pile is inserted beneath a conduit using a vibratory pile driver that rotates about a fixed pivot element on an excavator or other heavy machine for positioning the pile driver to advance the curved sheet pile along a fixed arc.
Abstract: The present invention relates to a support system for supporting a conduit. In one exemplary embodiment, the system includes support beams extending across an excavated opening. For example, a pair of beams may be positioned to span the excavated opening with the opposing ends of the beams supported on the ground above the excavated opening. Support rods may be positioned to extend through and/or from the beams and into the excavated opening. In one exemplary embodiment, the support rods include a J-hook configured for receipt within an opening in sections of curved sheet pile positioned beneath a conduit. By using a plurality of rods, the individual sections of curved sheet pile may be connected to the beams to provide a support structure for the curved sheet pile and, correspondingly, the conduit extending above the curved sheet pile and below the beam.