Patents Assigned to Texaco Chemical Inc.
  • Patent number: 5430198
    Abstract: Disclosed is a two-step process for the generation of diisopropyl ether from a crude by-product acetone stream which comprises:a) Hydrogenating said crude acetone over a bulk-metal, nickel-rich catalyst to give an isopropanol-rich effluent;b) Dehydrating said isopropanol-rich intermediate in the presence of a strong acid zeolite catalyst from the group consisting of .beta.-zeolite, optionally modified with one or more metals from Group IB, VB, VIB, VIIB and VIII of the Periodic Table, and a dealuminized Y-zeolite, wherein the dehydration temperature is from about 80.degree. C. to 200.degree. C.
    Type: Grant
    Filed: November 8, 1993
    Date of Patent: July 4, 1995
    Assignee: Texaco Chemical Inc.
    Inventors: John F. Knifton, Pei-Shing E. Dai
  • Patent number: 5414163
    Abstract: A method for preparing tertiary butyl alcohol wherein a feedstock comprising a solvent solution of tertiary butyl hydroperoxide in tertiary butyl alcohol or a mixture of tertiary butyl alcohol with isobutane is charged to a hydroperoxide decomposition reaction zone containing a catalytically effective amount of a hydroperoxide decomposition catalyst consisting essentially of titania or zirconia and is brought into contact with the catalyst in liquid phase under hydroperoxide decomposition reaction conditions to convert the tertiary butyl hydroperoxide to decomposition products, principally tertiary butyl alcohol.
    Type: Grant
    Filed: November 12, 1993
    Date of Patent: May 9, 1995
    Assignee: Texaco Chemical Inc.
    Inventors: John R. Sanderson, John F. Knifton, Edward T. Marquis
  • Patent number: 5414141
    Abstract: A method for preparing tertiary butyl alcohol wherein a solution of a tertiary butyl hydroperoxide feedstock in tertiary butyl alcohol is charged to a hydroperoxide decomposition reaction zone containing a catalytically effective amount of a hydroperoxide decomposition catalyst consisting essentially of palladium and gold supported on alumina, and is brought into contact with the catalyst in liquid phase under hydroperoxide decomposition reaction conditions to convert the tertiary butyl hydroperoxide to decomposition products, principally tertiary butyl alcohol and ditertiary butyl peroxide.
    Type: Grant
    Filed: November 12, 1993
    Date of Patent: May 9, 1995
    Assignee: Texaco Chemical Inc.
    Inventors: John R. Sanderson, John F. Knifton, Roger G. Duranleau
  • Patent number: 5414145
    Abstract: Tertiary butyl alcohol (TBA) is prepared by non-catalytically reacting isobutane with oxygen to provide a reaction product comprising isobutane, peroxides including tertiary butyl hydroperoxide and impurities, charging the de-isobutanized reaction product and a soluble hydroperoxide decomposition catalyst to a first hydroperoxide decomposition reactor fitted with a fractionating column to provide a liquid reaction product comprising TBA, catalyst, hydroperoxides, and contaminants, and a vaporized decomposition product, cooling said vaporized reaction product to provide a condensate, and recovering a portion as a TBA reaction product, charging the liquid reaction product to a second hydroperoxide decomposition reactor to substantially completely decompose the peroxides therein and to form a second hydroperoxide decomposition product, which is charged to a second distillation column and separated therein into a third lighter overhead fraction comprising TBA, and a third heavier liquid fraction comprising normal
    Type: Grant
    Filed: August 11, 1994
    Date of Patent: May 9, 1995
    Assignee: Texaco Chemical Inc.
    Inventors: Yu-Hwa E. Sheu, John R. Sanderson, Mark A. Mueller, William A. Smith
  • Patent number: 5414162
    Abstract: A method for preparing tertiary butyl alcohol wherein a feedstock comprising a solvent solution of tertiary butyl hydroperoxide in tertiary butyl alcohol or a mixture of tertiary butyl alcohol with isobutane is charged to a hydroperoxide decomposition reaction zone containing a catalytically effective amount of a hydroperoxide decomposition catalyst consisting essentially of pentagonally cross-sectioned alumina having palladium deposited thereon and is brought into contact with the catalyst in liquid phase with agitation under hydroperoxide decomposition reaction conditions to convert the tertiary butyl hydroperoxide to decomposition products, principally tertiary butyl alcohol.
    Type: Grant
    Filed: November 12, 1993
    Date of Patent: May 9, 1995
    Assignee: Texaco Chemical Inc.
    Inventors: John R. Sanderson, John F. Knifton
  • Patent number: 5401889
    Abstract: A method for preparing tertiary butyl alcohol wherein a feedstock comprising a solution of tertiary butyl hydroperoxide in a cosolvent mixture of tertiary butyl alcohol with isobutane is charged to a hydroperoxide decomposition reaction zone containing a catalytically effective amount of a hydroperoxide decomposition catalyst and is brought into contact with the catalyst in liquid phase with agitation under hydroperoxide decomposition reaction conditions to convert the tertiary butyl hydroperoxide to decomposition products, principally tertiary butyl alcohol.
    Type: Grant
    Filed: November 12, 1993
    Date of Patent: March 28, 1995
    Assignee: Texaco Chemical Inc.
    Inventors: John R. Sanderson, Mark A. Mueller, Yu-Hwa E. Sheu
  • Patent number: 5399794
    Abstract: A method for preparing tertiary butyl alcohol wherein a feedstock comprising a solvent solution of tertiary butyl hydroperoxide in tertiary butyl alcohol or a mixture of tertiary butyl alcohol with isobutane is charged to a hydroperoxide decomposition reaction zone containing a catalytically effective amount of a hydroperoxide decomposition catalyst consisting essentially of alumina having gold-promoted palladium deposited thereon and is brought into contact with the catalyst in liquid phase with agitation under hydroperoxide decomposition reaction conditions to convert the tertiary butyl hydroperoxide to decomposition products, principally tertiary butyl alcohol.
    Type: Grant
    Filed: November 12, 1993
    Date of Patent: March 21, 1995
    Assignee: Texaco Chemical Inc.
    Inventor: John R. Sanderson
  • Patent number: 5399777
    Abstract: In the non-catalytic liquid phase oxidation of isobutane, it has been found that the reaction is initiated with 0.05 wt % to 0.08 wt % tertiary butyl hydroperoxide.
    Type: Grant
    Filed: March 21, 1994
    Date of Patent: March 21, 1995
    Assignee: Texaco Chemical Inc.
    Inventor: Mark A. Mueller
  • Patent number: 5395980
    Abstract: In the non-catalytic liquid phase oxidation of isobutane, it has been found that the reaction is initiated with 0.05 wt % to 0.08 wt % ditertiary butyl peroxide.
    Type: Grant
    Filed: March 21, 1994
    Date of Patent: March 7, 1995
    Assignee: Texaco Chemical Inc.
    Inventors: Mark A. Mueller, John R. Sanderson
  • Patent number: 5387723
    Abstract: Disclosed is a method for producing alkyl tertiary alkyl ethers which comprises reacting t-butanol with an alkanol in the presence of a catalyst which exhibits extended life comprising .beta.-zeolite modified with one or more metals selected from the group consisting of Group IA and Group IIIB of the Periodic Table and continuously contacting said alkanol and t-butanol in a molar amount from about 10:1 to 1:10 over said zeolite catalyst at a temperature of about 20.degree. C. to about 250.degree. C. and a pressure of about atmospheric to about 1000 psig.
    Type: Grant
    Filed: January 12, 1994
    Date of Patent: February 7, 1995
    Assignee: Texaco Chemical Inc.
    Inventors: John F. Knifton, Pei-Shing E. Dai
  • Patent number: 5387722
    Abstract: Disclosed is a process for preparing alkyl tertiary alkyl ethers in one step which comprises reacting tert-butanol and a C.sub.1 -C.sub.4 primary alcohol in the presence of a catalyst consisting essentially of a pentasil zeolite having a silica/alumina ratio of 50-150, optionally with a binder at a temperature of about 80.degree. to 200.degree. C. and atmospheric pressure to about 1000 psig, wherein when the temperature is in the operating range above 140.degree. C., the product comprises a two-phase mix of a MTBE or ETBE and isobutylene product-rich phase and a heavier aqueous primary alcohol-rich phase.
    Type: Grant
    Filed: September 23, 1993
    Date of Patent: February 7, 1995
    Assignee: Texaco Chemical Inc.
    Inventors: John F. Knifton, Pei-Shing E. Dai
  • Patent number: 5386968
    Abstract: De-icing compositions, such as used on aircraft wing surfaces, are found to not need thickeners to obtain acceptable holdover times. The compositions are based on an alkylene glycol component (such as propylene glycol, diethylene glycol and mixtures thereof), and obtain particular advantage when a nonionic alkylphenol ethoxylate surfactant is used in conjunction with an alkylaryl sulfonate hydrotrope, as additives. This latter combination of additives gives de-icing compositions with increased holdover times with no degradation of other properties. These compositions exhibit a Newtonian rheology as required for de-icing compositions.
    Type: Grant
    Filed: October 21, 1993
    Date of Patent: February 7, 1995
    Assignee: Texaco Chemical Inc.
    Inventors: David A. Coffey, Samir S. Ashrawi, Edward C. Nieh
  • Patent number: 5364971
    Abstract: The present invention relates to a process for the reduction of the color of polyamines by reacting at elevated temperature, e.g. 120.degree.-170.degree. C., and pressure, e.g. 500 to 6000 psig. the colored polyamines, e.g. triethylenetetramine and tetraethylenepentamine, in the presence of a ruthenium on alumina hydrogenation catalyst. The catalyst for the polyamine decolorization process preferably has at least 0.5 wt. % Ru. In the process of the present invention, the polyamines can either be distilled into a narrow product composition and then hydrogenareal, or a crude polyamine product can be hydrogenated and then distilled to produce the desired product composition.
    Type: Grant
    Filed: August 25, 1993
    Date of Patent: November 15, 1994
    Assignee: Texaco Chemical Inc.
    Inventor: Wei-Yang Su
  • Patent number: 5362914
    Abstract: The present invention relates to a process for the reduction of the color of polyamines by reacting at elevated temperature, e.g. 120.degree.-170.degree. C., and pressure, e.g. 500 to 6000 psig. the colored polyamines, e.g. triethylenetetramine and tetraethylenepentamine, in the presence of a cobalt on alumina hydrogenation catalyst promoted with copper and chromium. In the process of the present invention, the polyamines can either be distilled into a narrow product composition and then hydrogenated, or a crude polyamine product can be hydrogenated and then distilled to produce the desired product composition.
    Type: Grant
    Filed: August 25, 1993
    Date of Patent: November 8, 1994
    Assignee: Texaco Chemical Inc.
    Inventor: Wei-Yang Su