Patents Assigned to Texas A&M
  • Patent number: 11887751
    Abstract: A composite billet includes an array of textured-powder bars in a geometry that is compatible with assembly and drawing of a billet with LAR˜1:1. A method is presented of compressing the bars suitable for the billet geometry in an inert gas environment. Methods of drawing of the billet control the deformation of the composite billet during area-reducing draw to fine wire so that the shape and registration of the constituent bars is preserved. Lastly a method is disclosed to fabricate a cable-in-conduit conductor containing the textured-powder Bi-2212/Ag wires that enables robust forming of windings and also provides in-cable containment of a buffer gas flow under high pressure during the high-temperature heat treatment of the winding that is required to produce optimum superconducting performance in the winding.
    Type: Grant
    Filed: October 24, 2021
    Date of Patent: January 30, 2024
    Assignees: The Texas A&M University System, Accelerator Technology Corp.
    Inventors: Peter McIntyre, John Scott Rogers
  • Patent number: 11887752
    Abstract: A design is presented for a structured cable suitable for carrying a large electric current in a cable-in-conduit comprising an assembly of rectangular stacks of thin superconducting tapes, with provisions for mechanical support of large mechanical stress and cross-flow of cooling fluid capable of removing large amounts of heat.
    Type: Grant
    Filed: October 26, 2021
    Date of Patent: January 30, 2024
    Assignees: The Texas A&M University System, Accelerator Technology Corp.
    Inventors: Peter McIntyre, John Scott Rogers
  • Publication number: 20240027978
    Abstract: A computer-implemented method for predicting external resistive forces encountered by an industrial machine includes (a) predicting by a first model a resistive force applied to an industrial machine from an external material using previously collected sensor data, (b) predicting by a second model that is different from the first model an error of the resistive force predicted by the first model using the previously collected sensor data and the resistive force predicted by the first model, and (c) determining a corrected prediction of the resistive force by combining the resistive force predicted by the first model with the error predicted by the second model.
    Type: Application
    Filed: July 19, 2023
    Publication date: January 25, 2024
    Applicants: The Texas A&M University System, Regents of the University of Minnesota
    Inventors: Xingyong Song, Sencheng Yu, Zongxuan Sun
  • Patent number: 11879777
    Abstract: A small, handheld Raman spectrometer device can be built from a laser, lenses, and a diffraction grating configured in a right-angle Raman spectroscopy geometry, and used in conjunction with a cell-phone camera to record the Raman spectra. The cell-phone-based Raman spectrometer system is suited to performing in-situ measurements of chemical and biological molecules.
    Type: Grant
    Filed: July 1, 2022
    Date of Patent: January 23, 2024
    Assignee: The Texas A&M University System
    Inventors: Peter M. Rentzepis, Dinesh Dhankhar, Anushka Nagpal
  • Publication number: 20240018451
    Abstract: A system for producing a product is disclosed. The system includes a production facility for producing a product using a chemical process involving chemical reactions, and an information processing device comprising a computer processor that simulates, using a hybrid model, the chemical reactions in the chemical process that produces the product to obtain a predicted output, wherein the hybrid model is a combination of a first-principles model and a data-driven model, determines, using an observer model, expected concentrations and levels of all substrates for the simulated process, sets derived optimal conditions for the chemical process based on the estimated concentrations and levels of all substrates, and predicts future production results based on a current status of the production facility.
    Type: Application
    Filed: November 16, 2021
    Publication date: January 18, 2024
    Applicants: The Texas A&M University System, Kaneka Americas Holding, Inc.
    Inventors: Costas Kravaris, Joseph Kwon, Parth Shah, Mohammed Ziyan Sheriff, Mohammed Saad Faizan Bangi, Chiranjivi Botre, Junichi Hirota
  • Patent number: 11867059
    Abstract: Systems and methods for drilling a borehole are disclosed. In an embodiment, the system includes a drill bit and a plasma inducing apparatus coupled to the drill bit. The plasma inducing apparatus is configured to generate plasma.
    Type: Grant
    Filed: October 30, 2019
    Date of Patent: January 9, 2024
    Assignee: The Texas A&M University System
    Inventors: David Staack, Li-Jung Tai, Dion S. Antao, Xin Tang
  • Patent number: 11857294
    Abstract: Provided herein are medical devices, systems and platforms to monitor tissue properties such as oxygen saturation, temperature and degree of tissue edema for diagnosis and post-operative patient monitoring. The medical devices may be handheld or portable or may be removable patches. The medical devices utilize light of various visible and near-infrared wavelengths to interrogate a tissue where the intensities of reflected light correlate to one or more tissue property. Also provided are methods for measuring tissue properties, for detecting pressure ulcers and for remotely monitoring in real time a surgical flap on a post-operative subject via the medical devices.
    Type: Grant
    Filed: November 4, 2022
    Date of Patent: January 2, 2024
    Assignee: The Texas A&M University System
    Inventors: John Hanks, Amir Tofighi Zavareh, Michel Saint-Cyr
  • Patent number: 11859096
    Abstract: A method of applying a gas-impermeable coating includes forming a polyelectrolyte complex suspension. The polyelectrolyte complex suspension is applied to a substrate. The substrate having the polyelectrolyte complex applied thereon is treated. The treating reduces salt content of the polyelectrolyte complex. The treating results in a gas-impermeable coating being formed on the substrate.
    Type: Grant
    Filed: November 10, 2022
    Date of Patent: January 2, 2024
    Assignee: The Texas A&M University System
    Inventors: Jaime C. Grunlan, Merid Haile, Ryan Smith
  • Publication number: 20230415452
    Abstract: Provided herein are monostable adhesive interfaces, for example, a sacrificial bond interface, and self-repairing composite materials that are a layered assembly of magnetic materials and deformable adhesive materials such as a non-linear adhesive material and/or a mechanical adhesive. Also provided is a method for constructing a sacrificial bond composite material and the sacrificial bond composite material constructed by the method.
    Type: Application
    Filed: June 22, 2023
    Publication date: December 28, 2023
    Applicant: The Texas A&M University System
    Inventors: Vanessa Restrepo, Oscar Ojeda
  • Publication number: 20230417652
    Abstract: Provided herein are non-invasive and non-destructive methods for classifying the type of external corrosion defect and the severity thereof in the cathodic protection system on a buried pipeline. Mathematical tools and algorithms are utilized to classify the type and the severity of the corrosion defect.
    Type: Application
    Filed: September 11, 2023
    Publication date: December 28, 2023
    Applicant: The Texas A&M University System
    Inventors: Homero Castaneda-Lopez, Lin Chen
  • Patent number: 11851626
    Abstract: Phase change material compositions and methods for using the compositions to prepare substrate coatings or bulk blended polymers that advantageously lower friction between interacting substrate surfaces and lower substrate surface wear.
    Type: Grant
    Filed: January 10, 2022
    Date of Patent: December 26, 2023
    Assignee: The Texas A&M University System
    Inventors: Reza Gheisari, Andreas A. Polycarpou
  • Publication number: 20230405884
    Abstract: Provided herein is a method for repairing a composite material, a layup manufacturing process of a composite and a system for manufacturing a 3-dimensional composite part. The method, process and system all utilize a dielectric barrier discharge applicator to generate a plasma to cure an epoxy material to bond a patch to a composite material or to bond two or more layers of composite material together in a 3-dimensional shape to form a composite part.
    Type: Application
    Filed: June 19, 2023
    Publication date: December 21, 2023
    Applicants: The Texas A&M University System, Essentium IPCO, LLC
    Inventors: Anubhav Sarmah, Micah J. Green, Smita Shivraj Dasari, Daniel Carey, Nirup Nagabandi
  • Patent number: 11839702
    Abstract: An embodiment includes a process for treating an abdominal aortic aneurysm (AAA) endoleak with a shape memory polymer (SMP) foam device. First, a bifurcated stent graft is placed within the aneurysm while a micro guidewire is positioned within the aneurysm for future catheter access. Second, after placing the iliac graft extension, a catheter is introduced over wire to deliver embolic foams. Third, embolic foams expand and conform to the aneurysm wall. Fourth, embolic foams create a stable thrombus to prevent endoleak formation by isolating peripheral vessels from the aneurysm volume.
    Type: Grant
    Filed: May 20, 2022
    Date of Patent: December 12, 2023
    Assignees: The Texas A&M University System, SHAPE MEMORY MEDICAL, INC.
    Inventors: Duncan J. Maitland, Todd L Landsman, John Horn, Landon Nash, Chung Yeh
  • Publication number: 20230374396
    Abstract: A high voltage discharge generating a plasma wave front is disposed within a headspace over an oil-containing liquid in order to create various chemical changes within the headspace, and ultimately within the liquid in order to inactivate various microbes, synthesize new chemicals, speed separation of a mixture, and aid in oil extraction. Such a discharge may be repeated at an optimum duration and duty-cycle to maximize the chemical effects of the non-equilibrium plasma at a substantially lower temperature than for an equilibrium plasma.
    Type: Application
    Filed: May 19, 2023
    Publication date: November 23, 2023
    Applicant: Texas A&M University System
    Inventors: Jamie Kraus, David Staack, Howard Jemison
  • Patent number: 11820010
    Abstract: A geared parallel manipulator of the SCARA type is provided that consists of a pair of motors, each driving in a controlled manner a pinion. The two pinions mesh each with a rack, said two racks being joined together via a revolute, or via a flexure hinge. The proposed parallel manipulator is simple in design and can be fabricated inexpensively of stamped sheet metal or of extruded parts. It can also be fabricated as a microelectromechanical system (MEMS) using thin film technologies.
    Type: Grant
    Filed: November 24, 2022
    Date of Patent: November 21, 2023
    Assignee: Texas A&M University Corpus Christi
    Inventor: Petru Aurelian Simionescu
  • Patent number: 11821095
    Abstract: Processes and systems for electrochemical exfoliation that use a compression reactor and, more particularly, to processes and systems for electrochemical exfoliation of planar parent materials, such as graphite. A reactor for electrochemical exfoliation may include a container configured to hold an electrolyte solution. The reactor may further include a porous chamber, wherein the porous chamber is configured to hold a parent material in fluid communication with the electrolyte solution. The reactor may further include a pressure source positioned to apply a pressure along a length of the porous chamber to thereby compress the parent material in the porous chamber. The reactor may further include a first counter electrode. The reactor may further include a working electrode. The reactor may further include an electrical power source in electrical communication with the first counter electrode and the working electrode.
    Type: Grant
    Filed: March 5, 2021
    Date of Patent: November 21, 2023
    Assignees: Exxon Mobil Technology and Engineering Company, The Texas A&M University System
    Inventors: Rohan Ashok Hule, Micah J. Green, Joshua T. Hope, Wanmei Sun
  • Patent number: 11816834
    Abstract: Various embodiments are disclosed for a machine learning system for automatic genotype selection and performance evaluation using multi-source and spatiotemporal remote sensing data collected from an unmanned aerial system (UAS). A computing device may be configured to access images of a field having a first genotype and a second genotype of at least one crop or plant planted therein. The computing device may apply an image processing routine to the images to analyze the images of the field and determine characteristics of the first genotype and the second genotype of the at least one crop or plant planted in the field. The computing device may then apply a machine learning routine to forecast a first estimated yield of the first genotype and a second estimated yield of the second genotype using the identified characteristics of the first genotype and the second genotype.
    Type: Grant
    Filed: January 6, 2021
    Date of Patent: November 14, 2023
    Assignee: The Texas A&M University System
    Inventors: Jinha Jung, Juan Landivar, Murilo Maeda, Akash Ashapure
  • Publication number: 20230358006
    Abstract: A surge gate for blocking a surge of water includes a sleeve disposed below a waterline of the water, wherein the sleeve has an open upper end and a closed lower end, and a piston slidably disposed in the sleeve, wherein the piston is configured to rise vertically within the sleeve along a vertical axis between a first position with an upper end of the piston positioned below the waterline, and a second position with the upper end of the piston positioned above the waterline.
    Type: Application
    Filed: August 20, 2021
    Publication date: November 9, 2023
    Applicant: The Texas A&M University System
    Inventor: John Albert Sweetman
  • Publication number: 20230355956
    Abstract: The present invention provides a direct cardiac compression device comprising one or more passive chambers that taper from an aperture to an apex; one or more inflatable active pockets individually independently inflatable, wherein each of the one or more inflatable active pockets is connected to the one or more passive chambers at least partially from the aperture to the apex and wherein the each of the one or more inflatable active pockets does not tension the adjacent one or more inflatable active pockets upon inflation; and a frame in contact with the one or more active chambers to at least partially surround the one or more active pockets.
    Type: Application
    Filed: December 14, 2020
    Publication date: November 9, 2023
    Applicants: The Texas A&M University System, CorInnova Inc.
    Inventors: John C. Criscione, Erica Christine Hord, Michael McDowall
  • Patent number: D1008698
    Type: Grant
    Filed: April 29, 2020
    Date of Patent: December 26, 2023
    Assignee: The Texas A&M University System
    Inventors: Ahmed K. Ali, Bruce D. Dvorak, Panwang Huo, Karishma Joshi, Niti Tataria