Patents Assigned to Texas State University - San Marcos
  • Patent number: 10599638
    Abstract: A method for identifying maximal independent sets in parallel may include, on a processor, accessing data representing an undirected graph, generating a respective initial priority value for each vertex, dependent on the vertex degree and an average degree for vertices in the graph, and recording an indication of the initial priority value for each vertex. The method may include determining, for multiple vertices, that no neighbor vertex has a priority value that is higher than that of the vertex. In response, the method may include recording respective indications that each neighbor vertex connected is not to be included in a maximal independent set for the undirected graph and recording an indication that the vertex is to be included in the maximal independent set. The determinations and recordings may be performed in parallel by respective processing elements of the processor. The processor may be a GPU.
    Type: Grant
    Filed: February 6, 2017
    Date of Patent: March 24, 2020
    Assignee: The Texas State University-San Marcos
    Inventors: Martin Burtscher, Sindhu Devale
  • Patent number: 10504725
    Abstract: The disclosure relates to a method for creating a nanoscale structure. The method includes forming a window in a semiconductor structure, the semiconductor structure comprising a substrate, a first semiconductor layer, and a mask layer; depositing a second semiconductor layer within the window such that a gap remains between the second semiconductor and a portion of the window; and regrowing the first semiconductor layer such that the first semiconductor layer fills the gap.
    Type: Grant
    Filed: October 19, 2016
    Date of Patent: December 10, 2019
    Assignee: The Texas State University-San Marcos
    Inventor: Edwin L. Piner
  • Patent number: 9359214
    Abstract: By controlling the pre-treatment of biomass materials and pyrolysis conditions, silica samples with various surface areas and levels of crystallinity were synthesized. With proper treatment, biogenic silica nanoaggregate (25-30 nm in diameter) can be synthesized from biomass materials. The characterizations revealed that the silica nanoaggregates were composed of smaller primary silica nanoparticles (ca. 4.2 nm in diameter). Under controlled melting catalyzed by metal salt cations, the silica nanoaggregates may be fuse to form semi-crystalline porous silica frameworks with tunable pore size and structural integrity. Organosilicon complexes were synthesized from the bio derived silica nanoaggregates.
    Type: Grant
    Filed: February 28, 2012
    Date of Patent: June 7, 2016
    Assignee: Texas State University-San Marcos
    Inventors: Luyi Sun, Weixing Wang
  • Patent number: 9023230
    Abstract: The present invention relates facile method to synthesize magnetic PNCs with highly dispersed and narrow size distributed NPs. The PNCs have highly thermal stability and unique electrical and dielectric properties.
    Type: Grant
    Filed: November 29, 2011
    Date of Patent: May 5, 2015
    Assignees: Lamar University, A Component of the Texas State University System, An Agency of the State of Texas, Texas State University San Marcos, A Component of the Texas State University System, An Agency of the State of Texas
    Inventors: Luyi Sun, Zhanhu Guo, Jiahua Zhu, Suying Wei
  • Publication number: 20140363361
    Abstract: The disclosure provides an LS methane hydrate containing a plurality of methane hydrate crystals and lignosulfonate. The disclosure also provides a method of making an LS methane hydrate by combining methane gas, liquid or solid water, and LS at controlled temperature and starting pressure for a time sufficient to form LS methane hydrate. The disclosure further provides a method of producing energy from an LS methane hydrate by providing an LS methane hydrate directly to a combustion chamber, whereby methane in the methane hydrate and LS are converted to energy in the combustion chamber and water in the methane hydrate is converted to steam. The disclosure additionally provides a method of releasing methane from an LS methane hydrate by heating an LS methane hydrate.
    Type: Application
    Filed: August 26, 2014
    Publication date: December 11, 2014
    Applicant: THE TEXAS STATE UNIVERSITY-SAN MARCOS
    Inventors: Weixing Wang, Luyi Sun
  • Publication number: 20140057108
    Abstract: By controlling the pre-treatment of biomass materials and pyrolysis conditions, silica samples with various surface areas and levels of crystallinity were synthesized. With proper treatment, biogenic silica nanoaggregate (25-30 nm in diameter) can be synthesized from biomass materials. The characterizations revealed that the silica nanoaggregates were composed of smaller primary silica nanoparticles (ca. 4.2 nm in diameter). Under controlled melting catalyzed by metal salt cations, the silica nanoaggregates may be fuse to form semi-crystalline porous silica frameworks with tunable pore size and structural integrity. Organosilicon complexes were synthesized from the bio derived silica nanoaggregates.
    Type: Application
    Filed: February 28, 2012
    Publication date: February 27, 2014
    Applicant: Texas State University - San Marcos
    Inventors: Luyi Sun, Weixing Wang
  • Publication number: 20140005415
    Abstract: A facile mechanochemical intercalation approach was adopted to immobilize ionic liquids into layered materials. The immobilized ionic liquids were found to be useful as catalysts for the coupling reaction of CO2 and propylene oxide to synthesize propylene carbonate. The immobilized ionic liquid exhibited similar reactivity as the free ionic liquid. Overall, the 10 mechanochemical approach proves to be effective in immobilizing ionic liquids in layered compounds and thus may expand the applications of ionic liquids and, meanwhile, improve catalyst separation and recycling.
    Type: Application
    Filed: December 7, 2011
    Publication date: January 2, 2014
    Applicant: TEXAS STATE UNIVERSITY-SAN MARCOS
    Inventors: Luyi Sun, Yuezhong Meng, Min Xiao, Hang Hu, Jarrett Clay Martin
  • Publication number: 20130209682
    Abstract: A coating composition for metal or refractories includes a polysilazane resin; and one or more additives that alter the thermal conductivity and/or the abrasion resistance of the cured polysilazane resin. The coating composition may be applied to a metal or refractory material substrate and heated to form a ceramic layer on the substrate. The ceramic layer exhibits lower thermal conductivity and increased abrasion resistance.
    Type: Application
    Filed: August 17, 2011
    Publication date: August 15, 2013
    Applicant: TEXAS STATE UNIVERSITY SAN MARCOS, A COMPONENT OF THE TEXAS STATE UNIVERSITY SYSTEM
    Inventors: John L. Massingill, JR., Clois E. Powell, Robert B. Habingreither, Ray G. Cook
  • Publication number: 20090023885
    Abstract: According to the invention, an amorphous CBDO copolymer (as described in U.S. Pat. No. 5,705,575, issued Jan. 6, 1998, which U.S. patent is incorporated herein by reference in its entirety) is treated to impart high impact resistance, also called impact strength.
    Type: Application
    Filed: July 15, 2008
    Publication date: January 22, 2009
    Applicant: Texas State University - San Marcos
    Inventors: Gary W. Beall, Jesse R. Hancock, Chad J. Booth