Abstract: Nucleic acid molecules such as shRNA clusters and artificial miRNA clusters are disclosed, Also disclosed are methods of use, compositions, cells, viral particles, and kits relating to the nucleic acid molecules disclosed herein. The disclosure provides, at least in part nucleic acid molecules such as shRNA clusters encoding shRNA-like molecules and artificial miRNA clusters encoding modified pri-miRNA-like molecules. The shRNA clusters and artificial miRNA clusters disclosed herein can be used, for example, to produce artificial RNA molecules, e.g., RNAi molecules. Cells, viral particles, compositions (e.g., pharmaceutical compositions), kits, and methods relating to the nucleic acid molecules, e.g., shRNA clusters and artificial miRNA clusters, are also disclosed. The nucleic acid molecules (e.g., shRNA clusters and artificial miRNA clusters), artificial RNA molecules (e.g., RNAi molecules), cells, viral particles, compositions (e.g.
Abstract: Disclosed is a system and method for Fmoc/tBu solution-phase peptide synthesis including the development of a new benzyl-type GAP protecting group, and related uses thereto. This novel GAP protecting group is utilized in place of a polymer support, facilitating C to N Fmoc peptide synthesis without chromatography, recrystallization, or polymer supports. The GAP group can be added and removed in high yield.
Abstract: An apparatus or method determines a salinity or metal content a liquid sample by scanning the liquid sample using a PXRF spectrometer, receiving a PXRF spectra from the PXRF spectrometer, baseline correcting and smoothing the received PXRF spectra, extracting a K? emission line of one or more elements from the baseline corrected and smoothed PXRF spectra using only one beam from the PXRF spectrometer, determining the salinity or the metal content of the liquid sample using the one or more processors and a predictive model that relates the K? emission line of the one or more elements to the salinity or the metal content of the liquid sample, and providing the salinity or the metal content of the liquid sample to the one or more input/output interfaces.
Type:
Grant
Filed:
December 16, 2019
Date of Patent:
January 26, 2021
Assignee:
Texas Tech University System
Inventors:
David Weindorf, Delaina Pearson, Somsubhra Chakraborty
Abstract: An apparatus or method determines an elemental composition of a sample by scanning a sample using a PXRF spectrometer, receiving a PXRF spectra from the PXRF spectrometer, baseline correcting and smoothing the received PXRF spectra, extracting a K? emission line of one or more elements from the baseline corrected and smoothed PXRF spectra from the PXRF spectrometer, determining the elemental composition of the sample using a predictive model that relates the K? emission line of the one or more elements to the elemental composition of the sample, and providing the elemental composition of the sample to the one or more input/output interfaces.
Type:
Grant
Filed:
December 16, 2019
Date of Patent:
January 26, 2021
Assignee:
Texas Tech University System
Inventors:
David Weindorf, Delaina Pearson, Somsubhra Chakraborty
Abstract: A method of treating a cancer in a patient includes obtaining a sample from the patient, using a C-circle assay to detect a presence of an alternative lengthening of telomeres (ALT) phenotype in the sample, and administering an effect amount of at least one of PRIMA-1 or APR-246 to the patient.
Type:
Application
Filed:
March 9, 2019
Publication date:
January 7, 2021
Applicant:
Texas Tech University System
Inventors:
Charles Patrick Reynolds, Balakrishna Koneru, Shawn Macha
Abstract: A system, method, and apparatus for separating liquid from gas in a horizontal well comprises a first tubing member comprising one of a screen-walled tube and a perforated tube, and a second tubing member configured inside the first tubing member, the second tubing member comprising a blank-walled tube section and one of a screen walled tube section and a perforated tube section, wherein the second tubing member has a smaller diameter than the first tubing member.
Abstract: Embodiments of the present disclosure pertain to delivery agents for delivering one or more active agents to desired cells (e.g., adipose stromal cells). The delivery agents generally include: (1) a particle; (2) one or more active agents carried by the particle; and (3) a targeting agent associated with the particle, where the targeting agent directs the delivery agent to the desired cells. Additional embodiments of the present disclosure pertain to methods for delivering active agents to adipose stromal cells through the use of the aforementioned delivery agents. In some embodiments, the methods include a step of associating the adipose stromal cells with the delivery agent such that the associating results in the delivery of the active agents into the adipose stromal cells. The associating can occur by administering the delivery agent to a subject for the treatment or prevention of obesity and related disorder or diseases in the subject.
Type:
Application
Filed:
February 21, 2019
Publication date:
November 26, 2020
Applicants:
Texas Tech University System, University of Tennessee research Foundation
Inventors:
Shu Wang, Ling Zhao, Zhaoyang Fan, Yujiao Zu
Abstract: The present invention includes a method for identifying an Alzheimer's disease (AD) patient prior to reaching clinical disease classification, comprising: obtaining a dataset associated with a blood, serum, or plasma sample from the patient, wherein the dataset comprises data representing the level of one or more microRNA biomarkers in the blood, serum, or plasma sample; assessing the dataset for a presence or an increase in an amount of miRNA-455-3p; determining the likelihood that the patient will develop AD patient prior to reaching clinical disease classification by detecting the presence or the increase in miRNA-455-3p to produce a score that is indicative of a likelihood of developing AD, wherein a higher score relative to a healthy control indicates that the patient is likely to have the prognosis for transitioning to classified AD, wherein the healthy control is derived from a non-AD patient with no clinical evidence of AD.
Abstract: An aerodynamic or hydrodynamic wall surface has an array of fibrillar structures disposed on and extending from the wall surface, wherein each fibrillar structure comprises a stalk and a tip. The stalk has a first end and a second end, wherein the first end is attached to the wall surface, and the stalk is oriented with respect to the wall surface at a stalk angle between approximately 1 degrees and 179 degrees. The tip has a first side and a second side, wherein the first side is attached proximate to the second end of the stalk, the tip has a larger cross-sectional area than the stalk, and the second side comprises a substantially planar surface that is oriented with respect to the stalk at a tip angle between approximately 0 degrees and 90 degrees.
Type:
Grant
Filed:
March 12, 2014
Date of Patent:
November 10, 2020
Assignees:
Texas Tech University System, nanoGriptech, Inc.
Abstract: The present invention includes compositions, methods, and methods of making and using a polymer-encased nanodisc comprising: one or more integral membrane proteins in a lipid layer; and a polymer comprising zwitterionic styrene-maleic acid derivative repeating units that carry zero or nearly zero negative charge, and the polymer-encased nanodiscs.
Abstract: A medical testing system comprises a housing, at least one magnet assembly configured around a probe configured to accept a human finger, formed in the housing wherein the at least one magnet assembly creates a permanent magnetic field around the probe, an RF signal generator configured to create a temporary magnetic field perpendicular to the permanent magnetic field in the housing, and an NMR coil assembly wherein a change in the permanent magnetic field induces a voltage in the NMR coil assembly.
Abstract: Disclosed is a system and method for a microdevice to separate blood cells based on differences in antigen expression. Specifically, cells of the same phenotype are separated based on whether or not they are activated during infection or resting. The device of the present disclosure takes a small sample of blood and provides differential cell counts that can be used to test for infection and inflammatory response. The device can be used to identify sepsis and other infections rapidly. By measuring differences in activated white cell counts such as neutrophils, the device of the present disclosure measures physiological response to infection in hospitalized patients recovering from burns, surgeries, etc.
Abstract: The present invention includes compositions, methods of making and using the compositions for modulating the immune response in a subject by providing a vaccine composition having a pollen or spore disposed in a pharmaceutical carrier for delivery to a subject, wherein the pollen or spore comprises multiple pores that connect an outer surface of the pollen/spore to an inner cavity and one or more antigens disposed on the outer surface, in the inner cavity, in the multiple pores, or a combination thereof, wherein the one or more antigens modulate an immune responses in the subject.
Type:
Grant
Filed:
June 20, 2017
Date of Patent:
August 25, 2020
Assignee:
Texas Tech University System
Inventors:
Harvinder S. Gill, Shashwati Atwe, Yunzhe Ma
Abstract: The present invention includes composition and methods for the fabrication of very-high-aspect-ratio structures from metallic glasses. The present invention provides a method for nondestructive demolding of templates after thermoplastic molding of metallic glass features.
Abstract: A method for fabricating a neutron detector includes providing an epilayer wafer of Boron-10 enriched hexagonal boron nitride (h-10BN or h-BN or 10BN or BN) having a thickness (t), dicing or cutting the epilayer wafer into one or more BN strips having a width (W) and a length (L), and depositing a first metal contact on a first surface of at least one of the BN strip and a second metal contact on a second surface of the at least one BN strip. The neutron detector includes an electrically insulating submount, a BN epilayer of Boron-10 enriched hexagonal boron nitride (h-10BN or h-BN or 10BN or BN) placed on the insulating submount, a first metal contact deposited on a first surface of the BN epilayer, and a second metal contact deposited on a second surface of the BN epilayer.
Abstract: A pulse simulation device comprises a controller for generating at least one signal simulating a pulse, at least one tactile feedback unit wherein the tactile feedback unit is driven by the controller to generate tactile response simulating a pulse, and a wearable attachment for holding the tactile feedback on an actor.
Abstract: An apparatus or method determines a salinity or metal content a liquid sample by scanning the liquid sample using a PXRF spectrometer, receiving a PXRF spectra from the PXRF spectrometer, baseline correcting and smoothing the received PXRF spectra, extracting a K? emission line of one or more elements from the baseline corrected and smoothed PXRF spectra using only one beam from the PXRF spectrometer, determining the salinity or the metal content of the liquid sample using the one or more processors and a predictive model that relates the K? emission line of the one or more elements to the salinity or the metal content of the liquid sample, and providing the salinity or the metal content of the liquid sample to the one or more input/output interfaces.
Type:
Grant
Filed:
October 19, 2018
Date of Patent:
June 30, 2020
Assignee:
Texas Tech University System
Inventors:
David Weindorf, Delaina Pearson, Somsubhra Chakraborty
Abstract: Methods and compositions for enhancing or promoting germination of bacterial spores, and yeasts are disclosed herein. The composition of the present invention comprises an extract obtained from banana or any member belonging to the genus Musa that may be used alone or in a growth medium to promote and enhance germination of bacterial spores, growth of bacterial, yeast, and fungal cell cultures.
Abstract: A device for performing a microfluidic assay on a chip comprising, a microfluidics chip, one or more fluid receptacles on the chip for receiving a fluid, a plurality of pneumatic pumps arrayed on the chip, each pump having a discharge channel leading to a rectifier on the chip, and a reaction chamber in fluid communication with each of the rectifiers, wherein a pressure on the pressurized fluid source drives fluid from the fluid receptacle into the incoming fluid channel connecting the fluid receptacle to the pump, through the pump and into the discharge channel, through the discharge channel to the rectifier, and through the rectifier into the reaction chamber, wherein the pump is configured to generate droplets of a pre-determined size, wherein the rectifiers prevent backflow of the droplets, and wherein droplets are combined in the reaction chamber, the chamber facilitating an assay being performed on the chip.
Abstract: High-frequency supercapacitors that can respond at kilohertz frequencies (AC-supercapacitors). The electrodes of the AC-supercapacitors include edge oriented graphene (EOG) electrodes or carbon nanofiber network (CNN) electrodes. The EOG electrodes are formed by utilizing a plasma and feedstock carbon gas to carbonize cellulous paper and deposit graphene implemented in one step. The CNN electrodes are formed by pyrolyzing a carbon nanofiber network utilizing a plasma.