Patents Assigned to The Arizona Board of Regents
  • Publication number: 20240054329
    Abstract: A system includes a Bayesian Spatiotemporal Graph Transformer (B-STAR) architecture that models spatial and temporal relationship of multiple agents under uncertainties. The system enables Multi-Agent Trajectory Prediction for safety-critical engineering applications, (e.g., autonomous driving and flight systems) and considers the impact of various sources, such as environmental conditions, pilot/controller behaviors, and potential conflicts with nearby aircraft. It is shown that B-STAR achieves state-of-the-art performance on the ETH/UCY pedestrian dataset with UQ competence.
    Type: Application
    Filed: August 15, 2023
    Publication date: February 15, 2024
    Applicant: Arizona Board of Regents on behalf of Arizona State University
    Inventor: Yongming Liu
  • Patent number: 11900624
    Abstract: Methods and systems are described that enable three-dimensional (3D) imaging of objects. One example system includes a light source that produces multiple light beams having specific spectral content and polarization states. The system also includes phase masks that modify the intensity or phase of the light, and projection optics that allow simultaneously projection of at least three fringe patterns onto an object having particular phase, polarization and spectral characteristics. The detection system includes a camera that simultaneously receives light associated with the at the fringe patterns upon reflection from the object, and a processing unit coupled to the camera unit that determines one or both of a phase or a depth information associated with the object. The system and associated methods can efficiency produce 2D images of the object and allow determination of characteristics such as surface profile. The disclosed systems and methods can be effectively implemented with moving objects.
    Type: Grant
    Filed: March 13, 2023
    Date of Patent: February 13, 2024
    Assignee: Arizona Board of Regents on Behalf of the University of Arizona
    Inventors: Stanley Pau, Rongguang Liang
  • Patent number: 11898144
    Abstract: Provided herein are synthetic nucleic acid molecules and methods of using such synthetic nucleic acid molecules for strong repression of target gene expression. In particular, provided herein are methods for altering expression of a protein in a cell, where the method comprises introducing into a cell a protein coding sequence operably linked to a near-threshold translational repressor having first and second trigger recognition sequences that are fully or partially complementary to a repressing trigger RNA; and introducing into a cell the repressing trigger RNA.
    Type: Grant
    Filed: January 22, 2021
    Date of Patent: February 13, 2024
    Assignee: ARIZONA BOARD OF REGENTS ON BEHALF OF ARIZONA STATE UNIVERSITY
    Inventors: Alexander Green, Yu Zhou
  • Patent number: 11898157
    Abstract: Compositions and methods for genetically modifying at least one nucleic acid sequence of interest in a polyploid organism.
    Type: Grant
    Filed: June 5, 2020
    Date of Patent: February 13, 2024
    Assignee: Arizona Board of Regents on Behalf of Arizona State University
    Inventors: David Nielsen, Christopher Jones
  • Patent number: 11896724
    Abstract: A wound dressing includes: a structural material formed into a dressing; at least one immunomodulatory agent associated with the dressing; and a growth factor associated with the dressing. A wound dressing kit includes: a structural material formed into a wound dressing; an immunomodulatory agent; and a growth factor composition, wherein the structural material contains the immunomodulatory agent and/or the immunomodulatory agent in a separate composition. A method of treating a wound in a tissue includes: applying an immunomodulatory agent to the wound; applying a wound dressing to the wound; and allowing the wound to heal with the immunomodulatory agent and wound dressing. The application of a growth factor can be before, during and/or after applying the wound dressing to the wound.
    Type: Grant
    Filed: October 7, 2020
    Date of Patent: February 13, 2024
    Assignee: Arizona Board of Regents on behalf of Arizona State University
    Inventors: Kaushal Rege, Deepanjan Ghosh
  • Patent number: 11896437
    Abstract: Systems and methods for digital reflex quantization and signature analysis. Movement of a stimulating device invoking a reflex response in an organism is captured as stimuli data. Electromyographic (EMG) of the reflex response is captured as EMG data. Movement resulting from the reflex response of a limb/appendage of the organism is captured as motion data. One or more of the stimuli data, the EMG data, and the motion data are analyzed to determine one or both of a motion signature and an EMG signature defining quantitative evaluation of the reflex response.
    Type: Grant
    Filed: June 12, 2019
    Date of Patent: February 13, 2024
    Assignee: Arizona Board of Regents on Behalf of the University of Arizona
    Inventors: Marvin J. Slepian, Bruce M. Coull, Hailey L. Swanson, Rebecca C. Slepian
  • Patent number: 11891689
    Abstract: Fabricating a nanopore sensor includes depositing a first and second oxide layers on first and second sides of a sapphire substrate. The second oxide layer is patterned to form an etch mask having a mask opening in the second oxide layer. A crystalline orientation dependent wet anisotropic etch is performed on the second side of the sapphire substrate using the etch mask to form a cavity having sloped side walls through the sapphire substrate to yield an exposed portion of the first oxide layer, each of the sloped side walls being a crystalline facet aligned with a respective crystalline plane of the sapphire substrate. A silicon nitride layer is deposited on the first oxide layer. The exposed portion of the first oxide layer in the cavity is removed, thereby defining a silicon nitride membrane in the cavity. An opening is formed through the silicon nitride membrane.
    Type: Grant
    Filed: March 3, 2021
    Date of Patent: February 6, 2024
    Assignee: Arizona Board of Regents on behalf of Arizona State University
    Inventors: Chao Wang, Pengkun Xia
  • Patent number: 11892897
    Abstract: Various embodiments for predicting which software vulnerabilities will be exploited by malicious hackers and hence prioritized by patching are disclosed.
    Type: Grant
    Filed: October 26, 2018
    Date of Patent: February 6, 2024
    Assignee: Arizona Board of Regents on Behalf of Arizona State University
    Inventors: Paulo Shakarian, Mohammed Almukaynizi, Jana Shakarian, Eric Nunes, Krishna Dharaiya, Manoj Balasubramaniam Senguttuvan, Alexander Grimm
  • Publication number: 20240034756
    Abstract: The disclosure provides mutant Brassica plants that have increased locules and seed production relative to native wild-type plants. Such plants include a point mutation in the clavata 1 gene (CLV1), such as a G->A substitution at position 1745 of the Brassica rapa coding sequence, which leads to an S582N substitution in the protein sequence. Equivalent substitutions can be made in any Brassicaceae coding/protein sequence. Also provided are methods of using such plants in breeding programs, as well as parts of such plants (such as seeds), and methods of making commodity products from such plants (e.g., oil). Also provided are mutant CLV1 sequences. Brassica plants harboring the disclosed CLV1 mutation can include other desirable traits, such as herbicide tolerance.
    Type: Application
    Filed: February 21, 2022
    Publication date: February 1, 2024
    Applicant: Arizona Board of Regents on Behalf of the University of Arizona
    Inventor: Rebecca Mosher
  • Publication number: 20240037394
    Abstract: A neural network accelerator architecture for multiple task adaptation comprises a volatile memory comprising a plurality of subarrays, each subarray comprising M rows and N columns of volatile memory cells; a source line driver connected to a plurality of N source lines, each source line corresponding to a column in the subarray; a binary mask buffer memory having size at least N bits, each bit corresponding to a column in the subarray, where a 0 corresponds to turning off the column for a convolution operation and a 1 corresponds to turning on the column for the convolution operation; and a controller configured to selectively drive each of the N source lines with a corresponding value from the mask buffer; wherein each column in the subarray is configured to store a convolution kernel.
    Type: Application
    Filed: July 27, 2023
    Publication date: February 1, 2024
    Applicant: Arizona Board of Regents on behalf of Arizona State University
    Inventors: Deliang Fan, Fan Zhang, Li Yang
  • Publication number: 20240035014
    Abstract: Described herein are polyhedral, three-dimensional tunable nanocages assembled with a multimeric protein covalently linked to a polynucleotide handle and a DNA origami base assembly including sequences complementary to the polynucleotide handles, wherein the polynucleotide handle and the complementary sequences hybridize to for double-stranded DNA helices.
    Type: Application
    Filed: October 12, 2023
    Publication date: February 1, 2024
    Applicant: ARIZONA BOARD OF REGENTS ON BEHALF OF ARIZONA STATE UNIVERSITY
    Inventors: Nicholas Stephanopoulos, Yang Xu
  • Patent number: 11885968
    Abstract: Compact occlusion-capable optical see-through head mounted displays (OCOST-HMDs) are described having a double-wrapped path and capable of rendering per-pixel mutual occlusion, and correct see-through viewing perspective or a pupil-matched viewing between the virtual and real views. An example device includes a polarizer, a polarizing beam splitter, an objective lens, a spatial light modulator (SLM), an eyepiece lens, a quarter wave plate, and a reflective optical element configured to reflect the light that is incident thereupon in a first direction, and to transit the light received from a microdisplay that is incident thereupon from a second direction. The components form a first double-pass configurations that allow the light that passes through the objective to reflect from the SLM and propagate again through the objective, and a second double-pass configuration that allows the light that passes through the eyepiece to reflect from the reflective optical element and propagate again through the eyepiece.
    Type: Grant
    Filed: September 14, 2020
    Date of Patent: January 30, 2024
    Assignee: Arizona Board of Regents on Behalf of the University of Arizona
    Inventors: Hong Hua, Austin Wilson
  • Patent number: 11884925
    Abstract: Provided herein are CRISPR-based synthetic repression systems as well as methods and compositions using the synthetic repression systems to treat septicemia, an adverse immune response in a subject and Waldenström macroglobulinemia.
    Type: Grant
    Filed: November 7, 2019
    Date of Patent: January 30, 2024
    Assignee: ARIZONA BOARD OF REGENTS ON BEHALF OF ARIZONA STATE UNIVERSITY
    Inventors: Samira Kiani, Mo Reza Ebrahimkhani, Farzaneh Moghadam
  • Publication number: 20240024685
    Abstract: The present disclosure provides an implantable optogenetic stimulation device. In one embodiment the device includes a housing and an optoelectronic stimulation circuit for light delivery for optogenetic stimulation. The stimulation circuit includes energy harvesting circuitry to receive radio frequency (RF) energy; one or more capacitor storage elements to store energy associated with the RF energy; a light emitting diode (LED) to generate a light source for optogenetic stimulation at a selected frequency and duty cycle; and controller circuitry to discharge the one or more capacitor storage elements at a selected duty cycle to cause the LED to generate pulsed light at the selected duty cycle with energy requirement above the peak power capability of the RF harvesting circuit.
    Type: Application
    Filed: July 24, 2023
    Publication date: January 25, 2024
    Applicant: Arizona Board of Regents
    Inventor: Philipp GUTRUF
  • Patent number: 11878988
    Abstract: A series of functionalized imidazophenthridine analogue-based blue phosphorescent emitters have been designed, where bulky substituents (e.g., tetrabutyl, phenyl, mesityl, triisopropylbenzene, etc.) are introduced on an imidazophenthridine fragment of the emitters. Bulky substituents may suppress potential excimer formation, as well as improve the solubility of the complexes. This class of emitters may be utilized in luminescent labels, emitters for organic light emitting devices, and lighting applications.
    Type: Grant
    Filed: January 24, 2020
    Date of Patent: January 23, 2024
    Assignee: Arizona Board of Regents on behalf of Arizona State University
    Inventors: Jian Li, Linyu Cao
  • Patent number: 11880984
    Abstract: Tracking-based motion deblurring via coded exposure is provided. Fast object tracking is useful for a variety of applications in surveillance, autonomous vehicles, and remote sensing. In particular, there is a need to have these algorithms embedded on specialized hardware, such as field-programmable gate arrays (FPGAs) or application-specific integrated circuits (ASICs), to ensure energy-efficient operation while saving on latency, bandwidth, and memory access/storage. In an exemplary aspect, an object tracker is used to track motion of one or more objects in a scene captured by an image sensor. The object tracker is coupled with coded exposure of the image sensor, which modulates photodiodes in the image sensor with a known exposure function (e.g., based on the object tracking). This allows for motion blur to be encoded in a characteristic manner in image data captured by the image sensor. Then, in post-processing, deblurring is performed using a computational algorithm.
    Type: Grant
    Filed: June 15, 2021
    Date of Patent: January 23, 2024
    Assignee: Arizona Board of Regents on Behalf of Arizona State University
    Inventors: Suren Jayasuriya, Odrika Iqbal, Andreas Spanias
  • Patent number: 11879830
    Abstract: An imaging system and method for detecting a target in a sample. The imaging system includes a lens-free holographic microscope having a light source in a first plane spaced above an image sensor. The image sensor extends in a second plane. The system also includes a microfluidic chip positioned between the light source and the image sensor. The microfluidic chip extends in a third plane, which is parallel to the second plane. There is at least one chamber in the microfluidic chip configured to receive a sample solution with a target. The system also has a plurality of functionalized beads positioned within the at least one chamber in the microfluidic chip. Any two of the plurality of functionalized beads have an affinity for binding together when exposed to the target in the sample solution.
    Type: Grant
    Filed: September 27, 2019
    Date of Patent: January 23, 2024
    Assignee: Arizona Board of Regents on Behalf of the University of Arizona
    Inventors: Zhen Xiong, Euan McLeod
  • Patent number: 11878023
    Abstract: Provided herein are compositions and methods for treating pulmonary hypertension. In particular, provided herein are dry powder formulations of fasudil for delivery to the lung.
    Type: Grant
    Filed: October 25, 2018
    Date of Patent: January 23, 2024
    Assignee: Arizona Board of Regents on Behalf of the University of Arizona
    Inventors: Heidi M. Mansour, Stephen Black, Priyadarshini Muralidharan
  • Publication number: 20240019429
    Abstract: Provided herein are methods of determining binding kinetics of a ligand. In some embodiments, the methods include contacting the ligand with a first surface of a substrate, which first surface comprises an electrically conductive coating and a population of receptors connected to the first surface via one or more linker moieties, wherein the receptors bind, or are capable of binding, to the ligand, applying an alternating current electric field to the substrate to induce the receptors to oscillate proximal to the first surface of the substrate, and detecting changes in oscillation amplitudes of the receptors over a duration. Related receptor oscillator array devices, systems and computer readable media are also provided.
    Type: Application
    Filed: July 10, 2023
    Publication date: January 18, 2024
    Applicant: ARIZONA BOARD OF REGENTS ON BEHALF OF ARIZONA STATE UNIVERSITY
    Inventors: Shaopeng WANG, Guangzhong MA, Xiaoyan ZHOU
  • Publication number: 20240020735
    Abstract: Various embodiments of systems and methods for cross media joint friend and item recommendations are disclosed herein.
    Type: Application
    Filed: February 24, 2023
    Publication date: January 18, 2024
    Applicant: Arizona Board of Regents on behalf of Arizona State University
    Inventors: Kai Shu, Suhang Wang, Jiliang Tang, Yilin Wang, Huan Liu