Patents Assigned to The Board of Regents
  • Patent number: 11918809
    Abstract: A system and method for the automatic stimulation of a vagus nerve for post-stroke rehabilitation is disclosed. The system includes an application subsystem having an electrode positioned to stimulate the vagus nerve and coupled to a user outside of a surgical setting. The system also includes a waveform generator communicatively coupled to the electrode, and a triggering subsystem including a receiver configured to detect the presence of a tag. The triggering subsystem is communicatively coupled to waveform generator and is configured to automatically trigger the stimulation of the vagus nerve upon detecting the presence of the tag. The tag is located proximate a rehabilitation context such that the tag is detected when the user is using the rehabilitation context, resulting in the vagus nerve of the user being automatically stimulated by the electrode in response to the user's post-stroke rehabilitation training.
    Type: Grant
    Filed: April 28, 2021
    Date of Patent: March 5, 2024
    Assignee: Arizona Board of Regents on Behalf of Arizona State University
    Inventors: Vishvak Rangarajan, Devin Dhooge, Kiryl Sheleg, Nicholas Holmes, Jeffrey Kleim, Bradley Greger, Shivanshi Shukla
  • Patent number: 11918826
    Abstract: A system and method for modulating optogenetic vagus neurons in a noninvasive and transcutaneous manner is disclosed. The system and method comprises a two-dimensional array of organic light emitting diodes (OLEDs), a voltage-generating unit, a control unit, and a feedback loop. The array is placed on a subject's outer ear. Because the array is flexible, it can be closely placed on the skin of the outer ear. The array can deliver optical therapy and monitor heart rate variability (HRV) of the subject simultaneously, and the pixels of the array can be individually addressed. The voltage-generating unit generates pulsed voltage to the OLEDs. The control unit is connected to the array and controls the array and therapeutic patterns. The feedback loop uses the HRV to identify the therapeutic patterns.
    Type: Grant
    Filed: April 8, 2021
    Date of Patent: March 5, 2024
    Assignee: ARIZONA BOARD OF REGENTS ON BEHALF OF ARIZONA STATE UNIVERSITY
    Inventors: Joseph T. Smith, Michael Goryll, Dixie Kullman, Jitendran Muthuswamy, Jennifer Blain Christen
  • Patent number: 11920002
    Abstract: A zwitterionic polysulfone formed from an allyl-containing monomer, a phenol-containing monomer, and an aryl-halide-containing monomer. The zwitterionic polysulfone may be incorporated into a desalination membrane.
    Type: Grant
    Filed: November 11, 2022
    Date of Patent: March 5, 2024
    Assignee: Arizona Board of Regents on behalf of Arizona State University
    Inventors: Matthew Green, Yi Yang
  • Patent number: 11922628
    Abstract: Described herein are means for generation of self-taught generic models, named Models Genesis, without requiring any manual labeling, in which the Models Genesis are then utilized for the processing of medical imaging. For instance, an exemplary system is specially configured for learning general-purpose image representations by recovering original sub-volumes of 3D input images from transformed 3D images. Such a system operates by cropping a sub-volume from each 3D input image; performing image transformations upon each of the sub-volumes cropped from the 3D input images to generate transformed sub-volumes; and training an encoder-decoder architecture with skip connections to learn a common image representation by restoring the original sub-volumes cropped from the 3D input images from the transformed sub-volumes generated via the image transformations.
    Type: Grant
    Filed: April 7, 2021
    Date of Patent: March 5, 2024
    Assignee: Arizona Board of Regents on behalf of Arizona State University
    Inventors: Zongwei Zhou, Vatsal Sodha, Jiaxuan Pang, Jianming Liang
  • Patent number: 11919937
    Abstract: Provided are T cell receptors (TCR) and TCR variable regions that can selectively bind the T-cell leukemia/lymphoma 1 (TCL1) oncoprotein. The TCR may be utilized in various therapies, such as autologous TCL1-TCR adoptive T cell therapy, to treat a cancer, such as a B-cell malignancy or a solid tumor expressing TCL1. Methods for expanding a population of T cells that target TCL1 are also provided.
    Type: Grant
    Filed: January 9, 2019
    Date of Patent: March 5, 2024
    Assignee: Board of Regents, The University of Texas System
    Inventors: Jinsheng Weng, Kelsey Moriarty, Sattva S. Neelapu
  • Patent number: 11918646
    Abstract: Described herein are dry immunogenic compositions and methods of freezing aluminum-containing vaccines such that when converted into a dried powder, the dry composition can be readily administered without loss of activity. Also described are methods of intranasal administering dry immunogenic compositions comprising antigens and aluminum adjuvants.
    Type: Grant
    Filed: December 11, 2018
    Date of Patent: March 5, 2024
    Assignee: Board of Regents, The University of Texas System
    Inventors: Zhengrong Cui, Sachin G. Thakkar
  • Patent number: 11918799
    Abstract: An apparatus for a heart of a patient having a cardiac assist device adapted to be implanted into the patient to assist the heart with pumping blood. The apparatus has a sensor adapted to be implanted into the patient. The sensor in communication with the cardiac assist device and the heart which measures native volume of the heart. Alternatively, the sensor monitors the heart based on admittance while the cardiac assist device. Alternatively, the sensor monitors the heart based on impedance.
    Type: Grant
    Filed: April 22, 2021
    Date of Patent: March 5, 2024
    Assignees: Board of Regents, The University of Texas System, Cardio Vol, LLC
    Inventors: John Porterfield, Jonathan W. Valvano, Clay Heighten, Anil Kottam, Marc David Feldman, Aleksandra Borisovna Gruslova, Drew R. Nolen
  • Patent number: 11918642
    Abstract: Disclosed are compositions for generating an immune response against human immunodeficiency virus (HIV) and their methods of uses.
    Type: Grant
    Filed: September 29, 2021
    Date of Patent: March 5, 2024
    Assignee: Arizona Board of Regents on Behalf of Arizona State University
    Inventors: Tsafrir S. Leket-Mor, Bertram Jacobs, Lydia Meador, Karen Kibler
  • Patent number: 11921519
    Abstract: A method estimates an intention of a lead vehicle by an ego vehicle. The method includes: (a) receiving, from at least one of a first plurality of sensors coupled to the ego vehicle, information associated with a parametric variable, (b) selecting a partition of an operating region of the parametric variable based on the parametric variable information, wherein the operating region includes a predetermined range of values for the parametric variable, wherein the partition includes a subset of the predetermined range of values and being associated with a predetermined ego vehicle input, and wherein the predetermined vehicle input includes at least one value for a parameter corresponding to dynamics of the ego vehicle, and (c) causing a vehicle control system of the ego vehicle to perform a vehicle maneuver based on the predetermined ego vehicle input.
    Type: Grant
    Filed: June 24, 2019
    Date of Patent: March 5, 2024
    Assignee: ARIZONA BOARD OF REGENTS ON BEHALF OF ARIZONA STATE UNIVERSITY
    Inventors: Sze Zheng Yong, Ruochen Niu, Qiang Shen
  • Patent number: 11922275
    Abstract: A method for determining a perturbation energy of a quantum state of a many-body system includes constructing a wave function that approximates the quantum state by adjusting parameters of the wave function to minimize an expectation value of a zeroth-order Hamiltonian. The zeroth-order Hamiltonian explicitly depends on a finite mass of each of a plurality of interacting quantum particles that form the many-body system, the quantum state has a non-zero total angular momentum, the wave function is a linear combination of explicitly correlated Gaussian basis functions, and each of the explicitly correlated Gaussian basis functions includes a preexponential angular factor. The perturbation energy is calculated from the wave function and a perturbation Hamiltonian that explicitly depends on the finite mass of each of the plurality of interacting quantum particles. The perturbation energy may be added to the minimized expectation value to obtain a total energy of the quantum state.
    Type: Grant
    Filed: June 18, 2021
    Date of Patent: March 5, 2024
    Assignees: Arizona Board of Regents on Behalf of the University of Arizona, a body corporate, NICOLAUS COPERNICUS UNIVERSITY IN TORÚN
    Inventors: Ludwik Adamowicz, Monika Stanke, Andrzej Kedziorski
  • Patent number: 11921285
    Abstract: Method and system for on-chip processing to obtain an EDOF image combines interferometry and imaging so the two operations do not interfere with one another but, rather, work together to create an in-focus, true color image of a three-dimensional object. This image has no significant artifacts and requires only limited processing. In addition, a coarse depth map is created in the process which may also be helpful in subsequent usage of the acquired image. A CMOS pixel-array sensor includes circuitry to implement processing at the pixel level.
    Type: Grant
    Filed: April 19, 2020
    Date of Patent: March 5, 2024
    Assignee: ARIZONA BOARD OF REGENTS ON BEHALF OF THE UNIVERSITY OF ARIZONA
    Inventors: John Koshel, Emma Landsiedel
  • Publication number: 20240068047
    Abstract: Provided herein are methods for identifying expression of SDHA, MIF, and or monosomy 3 or disomy 3 status in sample to identify the sample as high-risk melanoma and/or the sensitivity to oxidative phosphorylation inhibitors. Also provided herein are methods for treating monosomy 3 uveal melanoma by administering a SDHA inhibitor in combination with an oxidative phosphorylation inhibitor.
    Type: Application
    Filed: September 7, 2023
    Publication date: February 29, 2024
    Applicant: Board of Regents, The University of Texas System
    Inventors: Chandrani CHATTOPADHYAY, Janos ROSZIK
  • Publication number: 20240067713
    Abstract: Methods for treating, reducing, ameliorating or inhibiting symptoms idiopathic pulmonary fibrosis (IPF) or interstitial pneumonia, comprising administering to a subject in need of an effective amount of a) multiple EGF-like-domains-9 (MEGF9) or a biologically active fragment thereof; b) uncoordinated receptor 5A (UNC5A) or a biologically active fragment thereof; c) dolichyl-phosphate beta-glucosyltransferase (ALG5) or a biologically active fragment thereof; d) a combination of two or three of a)-c); e) an antibody specifically binding to a); f) an antibody specifically binding to b); g) an antibody specifically binding to c); h) a combination of two or three of e)-g); or i) a combination of at least one of a)-c) and at least one of e)-g). Pharmaceutical compositions and processes for making and using the compositions are also disclosed.
    Type: Application
    Filed: October 5, 2023
    Publication date: February 29, 2024
    Applicant: Board of Regents, The University of Texas System
    Inventor: Sreerama SHETTY
  • Patent number: 11917123
    Abstract: A light projection system for projecting full-resolution, high quality images into different directions. The system includes a light source configured to provide a homogenous output beam of light and an illumination shaping optic elements configured with at least one of a predetermined cone angle, numerical aperture, and F-number. The system also includes a spatially-dependent, angular light modulator (ALM) with a plurality of pixels, each having an ON state, an OFF state, one input pupil, and N diffraction order pupils. The ALM is positioned such that the output beam is incident on the plurality of pixels. The at least one of the predetermined cone angle, numerical aperture, and F-number of the illumination shaping optic elements prevents contaminating light from entering an incorrect pupil. The system additionally includes a processor coupled to the ALM to provide discrete diffraction-based beam steering, whereby the ALM will project into one diffraction order at one time.
    Type: Grant
    Filed: February 21, 2020
    Date of Patent: February 27, 2024
    Assignee: Arizona Board of Regents on Behalf of the University of Arizona
    Inventors: Brandon Hellman, Yuzuru Takashima
  • Patent number: 11915837
    Abstract: A method includes simulating diffraction in a transmission geometry of relativistic electron bunches from a crystallographic structure of a crystal thereby simulating diffraction of the relativistic electron bunches into a plurality of Bragg peaks. The method includes selecting a range of angles between a direction of propagation of the relativistic electron bunches and a normal direction of crystal including an angle at which a diffraction portion is maximized. The method includes sequentially accelerating a plurality of physical electron bunches to relativistic energies toward a physical crystal having the crystallographic structure and diffracting the plurality of physical electron bunches off the physical crystal at different angles and measuring the diffraction portion into the respective Bragg peak at the different angles. The method includes selecting a final angle based on the measured diffraction portion into the respective Bragg peak at the different angles and generating a pulse of light.
    Type: Grant
    Filed: July 16, 2021
    Date of Patent: February 27, 2024
    Assignee: Arizona Board of Regents on Behalf of Arizona State University
    Inventors: William Graves, Lucas Malin
  • Patent number: 11912762
    Abstract: Methods for identifying compounds that positively regulate connexin 43 hemichannels.
    Type: Grant
    Filed: April 19, 2021
    Date of Patent: February 27, 2024
    Assignee: Board of Regents of the University of Texas System
    Inventors: Jean X. Jiang, Manuel A. Riquelme, Sumin Gu
  • Patent number: 11912991
    Abstract: Embodiments of the disclosure concern methods and compositions related to generation and/or use of proofreading reverse transcriptases, including those that are thermophilic or hyperthermophilic. The disclosure encompasses specific recombinant polymerases and their use. In some embodiments, the polymerases are utilized for RNA sequencing in the absence of generation of a cDNA intermediate.
    Type: Grant
    Filed: November 13, 2020
    Date of Patent: February 27, 2024
    Assignee: BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM
    Inventors: Andrew Ellington, Jared Ellefson, Jimmy Gollihar
  • Patent number: 11911330
    Abstract: A robotic exoskeleton including a back portion providing at least two degrees of freedom, two shoulder portions, each shoulder portion providing at least five degrees of freedom, two elbow portions, each elbow portion providing at least one degree of freedom, and two forearm portions, each forearm portion providing at least one degree of freedom.
    Type: Grant
    Filed: June 14, 2021
    Date of Patent: February 27, 2024
    Assignee: Board of Regents, The University of Texas System
    Inventors: Ashish Warren Deshpande, Bongsu Kim
  • Patent number: 11916351
    Abstract: Methods, devices and systems for improving single-frequency operation of diode lasers are described. One such method includes ramping up an operational current of a diode laser for a first predetermined number of steps, and measuring an associated current value indicative of optical power within the laser diode for each of the first predetermined number of steps. Next, operational current of the diode laser is ramped down for a second predetermined number of steps, and an associated current value indicative of optical power within the laser diode is measured for each of the second predetermined number of steps. Using the measured data current values at which a mode hop or a multimode operation is likely to occur are identified, and a contiguous range of operating currents that is devoid of identified likely mode hops or multimode regions of operation is determined as the operating current range of the diode laser.
    Type: Grant
    Filed: July 26, 2019
    Date of Patent: February 27, 2024
    Assignee: Arizona Board of Regents on Behalf of the University of Arizona
    Inventor: Yushi Kaneda
  • Patent number: 11916866
    Abstract: A computer-implemented framework and/or system for cyberbullying detection is disclosed. The system includes two main components: (1) A representation learning network that encodes the social media session by exploiting multi-modal features, e.g., text, network, and time; and (2) a multi-task learning network that simultaneously fits the comment inter-arrival times and estimates the bullying likelihood based on a Gaussian Mixture Model. The system jointly optimizes the parameters of both components to overcome the shortcomings of decoupled training. The system includes an unsupervised cyberbullying detection model that not only experimentally outperforms the state-of-the-art unsupervised models, but also achieves competitive performance compared to supervised models.
    Type: Grant
    Filed: December 9, 2021
    Date of Patent: February 27, 2024
    Assignee: Arizona Board of Regents on Behalf of Arizona State University
    Inventors: Lu Cheng, Kai Shu, Siqi Wu, Yasin Silva, Deborah Hall, Huan Liu