Patents Assigned to The Board of Trustees-Leland Stanford Junior University
  • Publication number: 20240183985
    Abstract: A laser beam steering system is disclosed which includes a laser source which produces a pulsed laser light beam with a frequency comb spectrum, a first metasurface configured to i) directly receive the pulsed laser and ii) directly generate a diffracted pulsed laser output at different frequencies with a beam at a center frequency normal to the first metasurface; and a second metasurface configured to i) directly receive the diffracted pulsed laser output and ii) to focus onto different foci at a focal plane, light propagating from the focal plane leads to generation of one or more optical beams that are controlled in space and time.
    Type: Application
    Filed: July 4, 2023
    Publication date: June 6, 2024
    Applicants: Purdue Research Foundation, THE BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIVERSITY
    Inventors: Amr Mohammad E. A. SHALTOUT, Vladimir M. SHALAEV, Mark L. BRONGERSMA
  • Patent number: 11998615
    Abstract: Compositions, methods, and kits are provided for treating bacterial infections with nanoparticles comprising a thiol-binding metallic core conjugated to a fluoroquinolone antibiotic. Recalcitrant infections are often difficult to treat because of the presence of persister cells, a subpopulation of bacterial cells that is highly tolerant of traditional antibiotics. Persister cells are dormant, which makes them less susceptible to many antibiotics, which are designed to kill growing cells. Administration of nanoparticles comprising a thiol-binding metallic core conjugated to fluoroquinolone antibiotics was found to be highly efficacious in eradicating persister cells and for treating infections for a broad range of bacterial species, including Gram-positive and Gram-negative bacteria. Such treatment was effective not only in eradicating planktonic bacteria but also bacteria in biofilms.
    Type: Grant
    Filed: April 13, 2022
    Date of Patent: June 4, 2024
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Peter Luke Santa Maria, Laurent Bekale
  • Patent number: 11998437
    Abstract: Described herein are methods for lengthening tubular organs using expandable implants. The expandable implants may be secured along a length of a tubular organ by forming a plication at each end of the implant. Securing the expandable implants in this manner may be used to treat short bowel syndrome. Methods for selecting and implanting an expandable implant suitable for lengthening a tubular organ according to predetermined patient parameters are further described herein.
    Type: Grant
    Filed: May 14, 2021
    Date of Patent: June 4, 2024
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: James C. Y. Dunn, Thomas M. Krummel
  • Patent number: 12002204
    Abstract: Techniques are described for tailoring automatic exposure control (AEC) settings to specific patient anatomies and clinical tasks. According to an embodiment, computer-implemented method comprises receiving one or more scout images captured of an anatomical region of a patient in association with performance of a computed tomography (CT) scan. The method further comprises employing a first machine learning model to estimate, based on the one or more scout images, expected organ doses representative of expected radiation doses exposed to organs in the anatomical region under different AEC patterns for the CT scan. The method can further comprises employing a second machine learning model to estimate, based on the one or more scout images, expected measures of image quality in target and background regions of scan images captured under the different AEC patterns, and determining an optimal AEC pattern based on the expected organ doses and the expected measures of image quality.
    Type: Grant
    Filed: September 10, 2021
    Date of Patent: June 4, 2024
    Assignees: GE PRECISION HEALTHCARE LLC, THE BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIVERSITY
    Inventors: Adam S. Wang, Debashish Pal, Abdullah-Al-Zubaer Imran, Sen Wang, Evan Zucker, Bhavik Natvar Patel
  • Patent number: 11999966
    Abstract: Nanostraws and to methods of utilizing them in order to deliver biologically relevant molecules such as DNA, RNA, proteins etc., into non-adherent cells such as immune cells, embryos, plant cells, bacteria, yeast etc. The methods described herein are repeatedly capable of delivering biologically relevant cargo into non-adherent cells, with high cell viability, dosage control, unaffected proliferation or cellular development, and with high efficiency. Among other uses, these new delivery methods will allow to scale pre-clinical cell reprogramming techniques to clinical applications.
    Type: Grant
    Filed: October 27, 2020
    Date of Patent: June 4, 2024
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Karl Martin Hjort, Sergio Leal-Ortiz, Yuhong Cao, Chris Rehse, Andy Kah Ping Tay, Nicholas A. Melosh
  • Patent number: 11999151
    Abstract: Described are composite grid structures that have a plurality of ply layers, each one of the plurality of ply layers comprising a plurality of first elongate tapes oriented in a first direction and a plurality of second elongate tapes oriented in a second direction, the second direction being offset from the first direction by an angle of at least 25 degrees. In the grid structures: each of the first elongate tapes has a first length extending between opposing ends of each of the plurality of first elongate tapes and a first midpoint intermediate the opposing ends, and each of the second elongate tapes has a second length extending between opposing ends of each of the plurality of second elongate tapes and a second midpoint intermediate the opposing ends. Associated composite laminate structures, grid structures, and methods of manufacturing and/or using the same are also disclosed.
    Type: Grant
    Filed: June 11, 2020
    Date of Patent: June 4, 2024
    Assignee: THE BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIVERSITY
    Inventor: Stephen W. Tsai
  • Publication number: 20240175088
    Abstract: Processes and materials to detect cancer from a biopsy are described. In some cases, cell-free nucleic acids can be sequenced, and the sequencing result can be utilized to detect sequences derived from a neoplasm. Detection of somatic variants occurring in phase can indicate the presence of cancer in a diagnostic scan and a clinical intervention can be performed.
    Type: Application
    Filed: February 7, 2024
    Publication date: May 30, 2024
    Applicant: The Board of Trustees of the Leland Stanford Junior University
    Inventors: David M. Kurtz, Maximilian Diehn, Arash Ash Alizadeh
  • Publication number: 20240175752
    Abstract: Systems and methods for compact and low-cost vibrational spectroscopy platforms are described. Many embodiments implement deep learning processes to identify the relevant optical spectral features for the identification of an element from a set of elements. Several embodiments provide that resolution reduction and feature selection render efficient data analysis processes. By reducing the spectral data from the full wide-band high-resolution spectrum to a subset of spectral bands, a number of embodiments provide compact and low-cost hardware incorporation in spectroscopic platforms for element identification functions.
    Type: Application
    Filed: March 30, 2022
    Publication date: May 30, 2024
    Applicant: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Jennifer A. Dionne, Ahmed Shuaibi, Amr A. E. Saleh
  • Publication number: 20240173370
    Abstract: Provided herein are hydrogels that include a plurality of bacteriophages located within and covalently bonded to the hydrogel interior. The hydrogel is engineered to facilitate a controlled sustained release of the connected bacteriophages, e.g., to or within the body of a patient suffering from a bacterial infection. Also provided are methods for forming the provided hydrogels, and for using the hydrogels to treat a patient suffering from a bacterial infection.
    Type: Application
    Filed: March 25, 2022
    Publication date: May 30, 2024
    Applicant: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Ovijit CHAUDHURI, Paul L. BOLLYKY, Robert MANASHEROB, Yung-Hao LIN, Derek AMANATULLAH
  • Publication number: 20240173355
    Abstract: The present disclosure provides methods and compositions for treating RAG2 deficiencies in subjects, comprising genetically modifying cells from the subjects ex vivo by integrating a functional, codon-optimized RAG 2 cDNA at the endogenous RAG2 locus.
    Type: Application
    Filed: April 5, 2022
    Publication date: May 30, 2024
    Applicant: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Mara Pavel-Dinu, Matthew H. Porteus
  • Patent number: 11992630
    Abstract: Devices and methods are provided to facilitate self-catheterization of a urethra. In an exemplary embodiment, the device includes an elongate anchor member comprising a proximal end and a rounded distal end to facilitate insertion into a user's vagina, a bridge extending laterally from an intermediate location of the anchor member, a guide on the bridge spaced apart from the anchor member such that the guide is aligned with the user's urethra, the guide including a passage therethrough sized to receive a urinary catheter therethrough, and a handle on the proximal end of the anchor member to facilitate manipulation by the user and consistent, accurate alignment of the guide.
    Type: Grant
    Filed: August 24, 2020
    Date of Patent: May 28, 2024
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Craig Comiter, Gabe Ho, Maria Iglesias, Isaac Justice, Amanda Urke
  • Patent number: 11992298
    Abstract: Systems and methods for predicting and treating relapses for neurological conditions in accordance with embodiments of the invention are illustrated. One embodiment includes a method for predicting and treating a clinical neurological condition relapse. The method includes steps for selecting a threshold heart rate variability value for a patient suffering from a clinical neurological condition, monitoring, using a cardiac monitor, the heart rate variability of the patient over time, providing an indicator that a relapse is imminent when the heart rate variability of the patient falls below the threshold heart rate variability value, and treating the patient using a transcranial magnetic stimulation device by applying an accelerated theta burst stimulation protocol where the transcranial magnetic stimulation target is the left prefrontal dorsolateral cortex.
    Type: Grant
    Filed: October 26, 2023
    Date of Patent: May 28, 2024
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Nolan Williams, Keith Sudheimer
  • Patent number: 11993639
    Abstract: Variant IL-13 polypeptides are provided, which are engineered to have one or more of the following properties: (a) altered affinity for IL-13R?2, relative to the native human IL-13 protein; (b) altered affinity for IL-13R?1 relative to the native human IL-13 protein; (c) a disruption in the binding site for IL-4R? relative to the native human IL-13 protein.
    Type: Grant
    Filed: July 29, 2021
    Date of Patent: May 28, 2024
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Kenan Christopher Garcia, Ignacio Moraga Gonzalez
  • Patent number: 11994472
    Abstract: Improved stimulated Raman spectroscopy is provided by replacing the Stokes (or anti-Stokes) optical source with a localized electromagnetic emitter that is excited with a non-electromagnetic excitation. Such a localized emitter can be an efficient Stokes (or anti-Stokes) source for stimulated Raman spectroscopy, and can also provide deep sub-wavelength spatial resolution. In a preferred embodiment, an electron beam from an electron microscope is used to excite the localized emitter. This provides combined Raman imaging and electron microscopy that has the two imaging modalities inherently registered with each other.
    Type: Grant
    Filed: July 24, 2020
    Date of Patent: May 28, 2024
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Jennifer A. Dionne, Amr Ahmed Essawi Saleh, Daniel K. Angell
  • Patent number: 11993645
    Abstract: R-spondin (RSPO) surrogate compositions and methods for their use are provided. RSPO surrogates of the invention comprise (i) a specific binding domain for Ring Finger Protein 43 (RNF43) or Zinc and Ring Finger Protein 3 (ZNRF3) and (ii) a cell targeting domain More specifically, wherein the specific binding domain for RNF43 or ZNRF3 is an antibody fragment, and wherein the cell targeting domain is a cytokine.
    Type: Grant
    Filed: January 11, 2018
    Date of Patent: May 28, 2024
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Vincent Christopher Luca, Kenan Christopher Garcia
  • Patent number: 11996285
    Abstract: Silicon carbide on insulator is provided by bonding bulk silicon carbide to a substrate with an oxide-oxide fusion bond, followed by thinning the bulk silicon carbide as needed. A doping-selective etch for silicon carbide is used to improve thickness uniformity of the silicon carbide layer(s).
    Type: Grant
    Filed: September 3, 2021
    Date of Patent: May 28, 2024
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Daniil M. Lukin, Jelena Vuckovic
  • Patent number: 11986267
    Abstract: Systems, methods and devices are implemented for microscope imaging solutions. One embodiment of the present disclosure is directed toward an epifluorescence microscope. The microscope includes an image capture circuit including an array of optical sensor. An optical arrangement is configured to direct excitation light of less than about 1 mW to a target object in a field of view of that is at least 0.5 mm2 and to direct epi-fluorescence emission caused by the excitation light to the array of optical sensors. The optical arrangement and array of optical sensors are each sufficiently close to the target object to provide at least 2.5 ?m resolution for an image of the field of view.
    Type: Grant
    Filed: August 26, 2022
    Date of Patent: May 21, 2024
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Kunal Ghosh, Laurie D. Burns, Abbas El Gamal, Mark J. Schnitzer, Eric Cocker, Tatt Wei Ho
  • Patent number: 11988716
    Abstract: A battery health monitoring system that utilizes adaptive cathode and adaptive anode observers to estimate the ion concentrations at the respective cathode and anode of a battery. Subsequently, the estimated ion concentrations can be used in a battery model to estimate the state of heath and state of charge of the battery. Additionally, the model and ion concentrations can be updated real time as aging components of the battery are evaluated in the output data from the battery.
    Type: Grant
    Filed: March 16, 2020
    Date of Patent: May 21, 2024
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Anirudh Allam, Simona Onori
  • Patent number: 11989641
    Abstract: A brain machine interface (BMI) to control a device is provided. The BMI has a neural decoder, which is a neural to kinematic mapping function with neural signals as input to the neural decoder and kinematics to control the device as output of the neural decoder. The neural decoder is based on a continuous-time multiplicative recurrent neural network, which has been trained as a neural to kinematic mapping function. An advantage of the invention is the robustness of the decoder to perturbations in the neural data; its performance degrades less—or not at all in some circumstances—in comparison to the current state decoders. These perturbations make the current use of BMI in a clinical setting extremely challenging. This invention helps to ameliorate this problem. The robustness of the neural decoder does not come at the cost of some performance, in fact an improvement in performance is observed.
    Type: Grant
    Filed: October 3, 2022
    Date of Patent: May 21, 2024
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: David Sussillo, Jonathan C. Kao, Sergey Stavisky, Krishna V. Shenoy
  • Patent number: 11980613
    Abstract: This disclosure provides methods of using BAF complex modulating compounds as inhibitors of BAF-mediated transcription in target cells. The BAF complex modulating compounds include 12-membered macrolactam compounds that can target a BAF-specific subunit (e.g., ARID1A) to prevent nucleosomal positioning, relieving transcriptional repression of HIV-1. The subject methods can provide for reversal of latency of HIV-1 in cells in vitro or in vivo. Use of the macrolactam BAF complex modulating compounds represent a method of HIV latency reversal with a unique mechanism of action, which can be optionally combined with other Latency Reversal Agents to improve reservoir targeting. The subject methods can be utilized in conjunction with any convenient methods of treating HIV or HIV latency, including methods related to immune system activation, antiretroviral therapies and/or anti-HIV agents.
    Type: Grant
    Filed: July 11, 2019
    Date of Patent: May 14, 2024
    Assignees: The Board of Trustees of the Leland Stanford Junior University, Purdue Research Foundation, Erasmus University Medical Center Rotterdam
    Inventors: Emily C. Dykhuizen, Gerald R. Crabtree, Tokameh Mahmoudi