Abstract: The present invention includes peptides derived from nucleosomal histone proteins which are useful for delaying the onset and progression of systemic lupus erythematosus (i.e. lupus or SLE). The peptides of the invention span the histone proteins (i.e. H1, H2A, H2B, H3, and H4). The invention additionally encompasses isolated nucleic acids which encode these histone peptides as well as pharmaceutical compositions which comprise one or more of a histone peptide. Further, the invention provides kits which comprise one or more histone peptides or isolated nucleic acids encoding histone peptides and an instructional material. The invention also provides methods of using these compositions and analogs of histone peptides to inhibit an immune response and associated inflammation in an animal and to treat disorders in an animal which are related to the production of autoantibodies and complications thereof, such as inflammatory diseases, autoimmune disorders, and nephritis.
Type:
Application
Filed:
August 2, 2002
Publication date:
January 30, 2003
Applicant:
The Board of Trustees of Northwestern University
Abstract: The present invention includes peptides derived from nucleosomal histone proteins which are useful for delaying the onset and progression of systemic lupus erythematosus (i.e. lupus or SLE). The peptides of the invention span the histone proteins (i.e. H1, H2A, H2B, H3, and H4). The invention additionally encompasses isolated nucleic acids which encode these histone peptides as well as pharmaceutical compositions which comprise one or more of a histone peptide. Further, the invention provides kits which comprise one or more histone peptides or isolated nucleic acids encoding histone peptides and an instructional material. The invention also provides methods of using these compositions and analogs of histone peptides to inhibit an immune response and associated inflammation in an animal and to treat disorders in an animal which are related to the production of autoantibodies and complications thereof, such as inflammatory diseases, autoimmune disorders, and nephritis.
Type:
Grant
Filed:
April 28, 2000
Date of Patent:
October 22, 2002
Assignee:
The Board of Trustees of Northwestern University
Abstract: The invention includes compositions, kits, and methods for modulating survival and differentiation of mammalian multi-potential hematopoietic progenitor cells using a placental glycoprotein hormone of the murine prolactin family, namely either murine prolactin-like protein E or murine prolactin-like protein F. The compositions, kits, and methods described herein can be used, for example, for in vitro or ex vivo expansion of hematopoietic precursor cells or to treat a disorder associated with aberrant hematopoiesis (e.g., pre-eclampsia and thrombocytopenia).
Type:
Grant
Filed:
June 23, 2000
Date of Patent:
July 17, 2001
Assignee:
The Board of Trustees of Northwestern University
Inventors:
Isaac Cohen, Phil Lefebvre, Jiandie Lin, Daniel Linzer
Abstract: The present invention provides isolated and purified polypeptide components of the mammalian circadian clock, polynucleotides that encode those polypeptides, expression vectors containing those polynucleotides, host cells transformed with those expression vectors, a process of making the polypeptide components using those polynucleotides and vectors, and processes using those polypeptides and polynucleotides.
Type:
Grant
Filed:
June 30, 1997
Date of Patent:
May 2, 2000
Assignee:
The Board of Trustees of Northwestern University
Inventors:
Joseph S. Takahaski, Fred Turek, Lawrence H. Pinto