Abstract: A flap actuation system employed in an aircraft wing with a flap having an internal structure employs a drive link pivotally attached at a top end with a drive axle to a forward lug on the internal structure and pivotally attached at a bottom end with a first pivot axle to a flap support element. An actuator is operably coupled to the drive link intermediate the top end and bottom end. A trailing link is pivotally attached at a leading end with a second pivot axle to the flap support element and pivotally attached at a trailing end with a reaction axle to an aft fitting on the internal structure. A catcher link is pivotally attached at a bottom end to the flap support element and at a top end to an intermediate fitting engaged to the internal structure.
Abstract: Systems and methods are provided for vacuum handling of composite parts. One embodiment is a method for picking up, placing, and compacting an object. The method includes covering a part of an object with an impermeable membrane, applying a negative pressure via an end effector that is sufficient to offset any air leaks between a first portion of the impermeable membrane and the object, thereby forming a suction hold that secures the object to the impermeable membrane, and transporting the object to a rigid tool while the suction hold is retained. The method further comprises applying a negative pressure via the end effector that offsets air leaks between a second portion of the impermeable membrane and the rigid tool, thereby forming a suction hold that compacts the object to the rigid tool.
Type:
Grant
Filed:
October 10, 2019
Date of Patent:
April 26, 2022
Assignee:
The Boeing Company
Inventors:
Luis Felipe Velasquez, Allen James Halbritter, Daniel Johnson
Abstract: A tool for removal of a spring clip from a nut plate assembly includes an inner sleeve having a first cleat configured to engage a first end of a spring clip and an outer sleeve having a second cleat configured to engage a second end of the spring clip, the outer sleeve being rotatably disposed around a portion of the inner sleeve. The tool includes first and second grip tabs respectively extending radially from a longitudinally extending central axis of the inner sleeve and the outer sleeve. Movement of the first grip tab and the second grip tab towards each other rotates the inner sleeve relative to the outer sleeve, and causes the first cleat and the second cleat to rotate towards each other to engage the first and second ends of the spring clip and to enable the spring clip to be removed from an assembled nut plate.
Type:
Grant
Filed:
December 7, 2020
Date of Patent:
April 26, 2022
Assignee:
The Boeing Company
Inventors:
Steven B. Falls, Scott K. Frankenbery, Joshua R. Murphy
Abstract: Neutralizing deflection in a transportation system comprising connecting a number of support structures to ground. A tube is coupled to the support structures via a number of actuators, wherein the tube defines an interior enclosure through which a vehicle can travel. Utilizing a number of sensors, directional displacement of the support structures can be sensed, and the actuators are controller to counter the sensed displacement of the support structures by producing a directionally-opposite displacement of the tube relative to the support structures.
Type:
Grant
Filed:
January 30, 2019
Date of Patent:
April 26, 2022
Assignee:
The Boeing Company
Inventors:
Robert Erik Grip, Steven Fulton Griffin
Abstract: An apparatus is provided for causing an unmanned aerial vehicle (UAV) to perform a contingency landing procedure. The apparatus includes memory and processing circuitry configured to cause the apparatus to at least determine candidate safe landing zones (SLZs) within an estimated current range of the UAV. Trajectories are generated for landing the UAV in respective ones of the candidate SLZs. Risk values are calculated that quantify third-party risk associated with operation of the UAV along respective ones of the trajectories to the respective ones of the candidate SLZs. A flight termination risk value is calculated that quantifies third-party risk associated with immediately landing the UAV at the current position. The lowest of the risk values is compared with the flight termination risk value, and a sequence is executed to operate the UAV along the trajectory to the selected one of the candidate SLZs, or immediately land the UAV.
Abstract: Devices for maintaining crawler alignment on complex-shaped blades and for enabling the blade crawler to traverse over trailing edge protrusions. Using ball and socket bearings or air pads in place of alignment wheels, the crawler will be able to track along complex-geometry rotor blades, propellers and other airfoils. Using an oversized-diameter roller, a semi-flexible roller, or a dual-roller arrangement, the crawler will be able to traverse over trailing edge protrusions.
Type:
Grant
Filed:
January 9, 2020
Date of Patent:
April 26, 2022
Assignee:
The Boeing Company
Inventors:
Joseph L. Hafenrichter, Gary E. Georgeson
Abstract: A system includes a cell support and an insulator. The cell support has an opening defined therethrough. The opening is configured to have a battery cell positioned at least partially therein. The insulator is positioned at least partially within the opening. The insulator is configured to be positioned between the battery cell and the cell support such that the insulator electrically-insulates the cell support from the battery cell.
Abstract: In an example, a system for indicating alignment between two components that are mechanically coupled to each other is disclosed. The system includes a first component, a second component, a connector configured to mechanically couple the first component to the second component by moving the connector from a first position to a second position, a first circuit affixed to the first component, and a second circuit affixed to the connector. The first circuit and the second circuit are positioned on the first component and the connector, respectively, such that an electrical connection between the first circuit and the second circuit occurs when the connector is in the second position and the first component and the second component are aligned. The first circuit or the second circuit comprises an antenna, and the electrical connection enables the antenna to transmit a signal.
Abstract: A vehicle fault detection system including a vehicle control module coupled to a plurality of vehicle system sensors configured to detect respective time series of data corresponding to a component parameter, the vehicle control module determines, based on domain knowledge obtained by the vehicle control module from only the respective time series of data, an existence of one or more relationships between the plurality of component parameters, and identifies an anomaly in the respective time series of data and at least a vehicle component to be serviced based only on the domain knowledge and the one or more relationships between the plurality of component parameters. An indication of the anomaly in the respective time series of data and an identification of the vehicle component to be serviced are to be presented as a graphical representation that includes a strength of the one or more relationships between the component parameters.
Abstract: A structural assembly includes a support structure and an elongate structure intersecting the support structure. The elongate structure has a length and a mass. The mass of the elongate structure varies along the length of the elongate structure. A localized mass of the elongate structure decreases toward the support structure and increases away from the support structure.
Abstract: Segmented shields are disclosed comprising material combinations and rolled configurations to impede and mitigate through-and-through penetration damage of a structure incorporating the segmented shields from the damage resulting from the impact of high-velocity micro-meteoroids and orbital debris particulate.
Abstract: Methods and assemblies for repairing an identified area on a member of a vehicle. A first doubler plate is positioned over a first side of the identified area of the member. A second doubler plate is positioned over an opposing second side of the identified area of the member. A first plurality of fasteners are inserted through the identified area and each of the first and second doubler plates and secured. A second plurality of fasteners are inserted through the first and second doubler plates and the member at points away from the identified area and secured.
Abstract: The present disclosure provides a blind tack fastener. The blind tack fastener includes an elongated body having a first end and a second end opposite the first end. The blind tack fastener also includes a collar surrounding a portion of the elongated body. The blind tack fastener also includes a sleeve surrounding the elongated body and positioned between the second end of the elongated body and the collar. A region of the sleeve is band annealed.
Abstract: An additive-manufacturing apparatus (100) comprises a support (102) and a powder-material source (106). The additive-manufacturing apparatus (100) further comprises a powder-supply arm (108), which comprises a hollow body (122), having an interior volume (124) that is in communication with the powder-material source (106), a powder-deposition opening (126) in the hollow body (122), and a powder-distribution blade (128), coupled to the hollow body (122) and extending along the powder-deposition opening (126). The additive-manufacturing apparatus (100) also comprises an energy source (110), an energy-supply arm (112), and energy emitters (114), coupled to the energy-supply arm (112). The additive-manufacturing apparatus (100) further comprises a rotary drive (116), configured to rotate the powder-supply arm (108) and the energy-supply arm (112) about a vertical axis A1, passing through the support (102), and intersecting a powder-supply-arm central axis A2 and an energy-supply-arm central axis A3.
Abstract: A personal ventilation device and method include a first duct segment and a second duct segment both held by a support structure that is configured to be mounted on a wearer of the personal ventilation device. The personal ventilation device also includes a first nozzle mounted to the first duct segment and a second nozzle mounted to the second duct segment. The first and second nozzles are configured to be disposed proximate to opposite sides of a face of the wearer and the first nozzle directs airflow from the first duct segment across the face of the wearer to form a control volume for a breathing space of the wearer.
Type:
Application
Filed:
September 20, 2021
Publication date:
April 21, 2022
Applicant:
THE BOEING COMPANY
Inventors:
David R. Space, James A. Fullerton, Timothy J. Arnaud, Jon Burton Shaw
Abstract: A method of thermally treating a material includes applying a thermal transfer blanket to a surface of the material. The thermal transfer blanket comprises a thermal energy storage media having a first temperature, the material having a second temperature that is different than the first temperature. Thermal energy is transferred between the thermal transfer blanket and the material, thereby modifying the temperature of the material.
Abstract: An electric propulsion unit comprising a housing, an AC motor, a beta rod, a propeller, a governor, an inverter, and a controller. The AC motor is disposed within the housing and includes a plurality of bearings supported inside the housing, a hollow motor shaft rotatably coupled to the housing by the plurality of bearings, a stator which is supported by the housing, and a rotor which is mounted to the hollow motor shaft. The beta rod is axially translatable inside the hollow motor shaft. The propeller is mechanically coupled to the hollow motor shaft. The propeller includes propeller blades having an adjustable pitch angle which depends on an axial position of the beta rod. The governor is configured to adjust a pitch angle of the propeller blades by actuating axial translation of the beta rod. The inverter is disposed within the housing and connected to receive DC power for conversion into AC power.
Type:
Application
Filed:
July 16, 2021
Publication date:
April 21, 2022
Applicant:
The Boeing Company
Inventors:
Frederic Lacaux, Kamiar J. Karimi, Eugene V. Solodovnik, Aaron J. Kutzmann, Patrick R. Darmstadt, Mary E. Beckman, Alejandro Silva, Nicholas J. Silveri, Esther S. Zidovetzki
Abstract: Described are systems and methods for a hydraulic swivel. The hydraulic swivel receives fluid flow in one direction and, in certain configurations, changes the direction of the fluid flow to a second direction before the fluid leaves the hydraulic swivel. The hydraulic swivel includes a first banjo, a second banjo, and a base. The banjos of the hydraulic swivel are configured to be repositioned.
Abstract: A headrest ventilation assembly is configured to secure to a headrest of a seat assembly, and includes an air conduit including one or more air inlets and one or more air outlets, and an air filter disposed within the air conduit between the one or more air inlets and the one or more air outlets. The air filter is configured to remove contaminants from the air that is drawn into the air conduit before being delivered out of the one or more air outlets. The assembly can also include a fan disposed on or within the air conduit. The fan is configured to draw the air into the one or more air inlets and provide airflow to deliver the air out of the one or more air outlets. The assembly can also include one or more ultraviolet (UV) light emitters disposed on or within the air conduit. The UV light emitter(s) are configured to emit UV light into the air to sanitize the air before the air is delivered out of the one or more air outlets.
Type:
Application
Filed:
August 18, 2021
Publication date:
April 21, 2022
Applicant:
THE BOEING COMPANY
Inventors:
David R. Space, James A. Fullerton, Timothy J. Arnaud, Jon Burton Shaw, Stephen M. Trent, Ty A. Larsen, Myriam Khalil
Abstract: Safety architecture for an automated work cell provides a barrier separating a work cell area from an operator or personnel area. The safety architecture enables personnel to conduct routine interactions with nonfunctioning motion platforms or positioning machines located in the work cell area through openings in the barrier separating the personnel area from the work cell area while other motion platforms or positioning machines in the work cell area continues to function.
Type:
Application
Filed:
October 14, 2021
Publication date:
April 21, 2022
Applicant:
The Boeing Company
Inventors:
Brian R. Conlan, Gavin Lloyd Smith, Christopher J. Wheaton, Dan D. Day, Clayton Lynn Munk