Patents Assigned to The Broad Institute
  • Publication number: 20230405015
    Abstract: The present invention provides a method of treatment of sarcoma comprising administering to a patient in need thereof a compound of general formula (I), in which R1, R2, R3, and R4, are as defined herein, alone or in pharmaceutical compositions or combinations comprising said compounds as a sole agent or in combination with other active ingredients.
    Type: Application
    Filed: August 31, 2023
    Publication date: December 21, 2023
    Applicants: Bayer Aktiengesellschaft, The Broad Institute, Inc., Dana-Farber Cancer Institute, Inc.
    Inventors: Martin LANGE, Stefan KAULFUSS, Charlotte Christine KOPITZ, Heidi GREULICH, Xiaoyun WU, Matthew MEYERSON
  • Publication number: 20230399662
    Abstract: The invention provides for delivery, engineering and optimization of systems, methods, and compositions for manipulation of sequences and/or activities of target sequences. Provided are delivery systems and tissues or organ which are targeted as sites for delivery. Also provided are vectors and vector systems some of which encode one or more components of a CRISPR complex, as well as methods for the design and use of such vectors. Also provided are methods of directing CRISPR complex formation in eukaryotic cells to ensure enhanced specificity for target recognition and avoidance of toxicity and to edit or modify a target site in a genomic locus of interest to alter or improve the status of a disease or a condition.
    Type: Application
    Filed: June 30, 2023
    Publication date: December 14, 2023
    Applicants: The Broad Institute, Inc., Massachusetts Institute of Technology
    Inventor: Feng ZHANG
  • Patent number: 11841371
    Abstract: The application relates to methods and systems for proteomics and spatial mapping of biomolecules using a next generation sequencing readout to decipher biomolecular and cellular interaction networks. Specifically, disclosed are antenna networks generated by conjugating DNA antennas to proteins. The antennas carry a unique antenna identifier (UAI) sequence that can provide spatial location of the network, as well as biomolecules by transfer of the UAI to reporter oligonucleotides associated with other antennas and biomolecules. The methods and systems are also applicable to single cells.
    Type: Grant
    Filed: March 13, 2019
    Date of Patent: December 12, 2023
    Assignees: The Broad Institute, Inc., Massachusetts Institute of Technology
    Inventors: Aviv Regev, Jellert Gaublomme
  • Patent number: 11840495
    Abstract: The present disclosure relates to compositions and methods related to bicyclo[2.2.1] heptanamine-containing compounds and salts.
    Type: Grant
    Filed: December 23, 2021
    Date of Patent: December 12, 2023
    Assignees: The Broad Institute, Inc., Instituto Carlos Slim de la Salud, A.C., Brigham and Women's Hospital, Inc.
    Inventors: Brian T. Chamberlain, David Kornfilt, Florence F. Wagner, Maria Alimova, Anna Greka, Joseph Growney
  • Patent number: 11834718
    Abstract: The present invention relates to methods of determining a cancer treatment prognosis for a subject in need thereof by evaluating epigenetic and genetic changes within a tumor sample from the subject. The present invention further provides methods of treating cancer in a subject by evaluating epigenetic and genetic changes within a tumor sample from the subject. In addition, the present invention provides methods of screening test agents to identify agents that decrease tumor cell plasticity.
    Type: Grant
    Filed: September 10, 2020
    Date of Patent: December 5, 2023
    Assignees: The Broad Institute, Inc., Dana-Farber Cancer Institute, Inc., The General Hospital Corporation, President and Fellows of Harvard College
    Inventors: Mark Kendell Clement, Gad Getz, Dan-Avi Landau, Alexander Meissner, Catherine Ju-Ying Wu
  • Publication number: 20230383289
    Abstract: Compositions and methods are provided herein for conducting prime editing of a target DNA molecule (e.g., a genome) that enables the incorporation of a nucleotide change and/or targeted mutagenesis. The compositions include fusion proteins comprising nucleic acid programmable DNA binding proteins (napDNAbp) and a polymerase (e.g., reverse transcriptase), which is guided to a specific DNA sequence by a modified guide RNA, named an PEgRNA. The PEgRNA has been altered (relative to a standard guide RNA) to comprise an extended portion that provides a DNA synthesis template sequence which encodes a single strand DNA flap which is synthesized by the polymerase of the fusion protein and which becomes incorporated into the target DNA molecule.
    Type: Application
    Filed: May 31, 2023
    Publication date: November 30, 2023
    Applicants: The Broad Institute, Inc., President and Fellows of Harvard College
    Inventors: David R. Liu, Andrew Vito Anzalone, James William Nelson
  • Publication number: 20230374527
    Abstract: The invention provides for systems, methods, and compositions for manipulation of sequences and/or activities of target sequences. Provided are vectors and vector systems, some of which encode one or more components of a CRISPR complex, as well as methods for the design and use of such vectors. Also provided are methods of directing CRISPR complex formation in eukaryotic cells and methods for selecting specific cells by introducing precise mutations utilizing the CRISPR/Cas system.
    Type: Application
    Filed: April 13, 2023
    Publication date: November 23, 2023
    Applicants: The Broad Institute, Inc., Massachusetts Institute of Technology
    Inventor: Feng Zhang
  • Publication number: 20230374550
    Abstract: The invention provides for delivery, engineering and optimization of systems, methods, and compositions for manipulation of sequences and/or activities of target sequences. Provided are vectors and vector systems, some of which encode one or more components of a CRISPR complex, as well as methods for the design and use of such vectors. Also provided are methods of directing CRISPR complex formation in prokaryotic and eukaryotic cells to ensure enhanced specificity for target recognition and avoidance of toxicity.
    Type: Application
    Filed: February 6, 2023
    Publication date: November 23, 2023
    Applicants: The Broad Institute, Inc., Massachusetts Institute of Technology, President and Fellows of Harvard College
    Inventors: Feng ZHANG, Patrick HSU, Chie-yu LIN, Fei RAN
  • Publication number: 20230365950
    Abstract: The invention provides for delivery, engineering and optimization of systems, methods, and compositions for manipulation of sequences and/or activities of target sequences. Provided are delivery systems and tissues or organ which are targeted as sites for delivery. Also provided are vectors and vector systems some of which encode one or more components of a SIN CRISPR complex, as well as methods for the design and use of such vectors. Also provided are methods of directing SIN CRISPR complex formation in eukaryotic cells to ensure enhanced specificity for target recognition and avoidance of toxicity and to edit or modify a target site in a genomic locus of interest to alter or improve the status of a disease or a condition.
    Type: Application
    Filed: February 8, 2023
    Publication date: November 16, 2023
    Applicants: The Broad Institute, Inc., Massachusetts Institute of Technology, University of Iowa Research Foundation
    Inventors: Feng ZHANG, Beverly DAVIDSON, Chie-Yu LIN, Edgardo RODRIGUEZ
  • Publication number: 20230365524
    Abstract: The present invention provides triazolone compounds of general formula (I): in which R1, R2, R3, R4, and R5 are as defined herein, methods of preparing said compounds, intermediate compounds useful for preparing said compounds, pharmaceutical compositions and combinations comprising said compounds and the use of said compounds for manufacturing pharmaceutical compositions for the treatment and prophylaxis of diseases, in particular hyperproliferative disorders, as a sole agent or in combination with other active ingredients.
    Type: Application
    Filed: April 20, 2023
    Publication date: November 16, 2023
    Applicants: Bayer Aktiengesellschaft, Bayer Pharma Aktiengesellschaft, The Broad Institute, Inc., President and Fellows of Harvard College, The General Hospital Corporation
    Inventors: Stefan Nikolaus GRADL, Duy NGUYEN, Knut EIS, Judith GÜNTHER, Timo STELLFELD, Andreas JANZER, Sven CHRISTIAN, Thomas MÜLLER, Sherif El SHEIKH, Han Jie ZHOU, Changjia ZHAO, David B. SYKES, Steven James FERRARA, Kery LIU, Michael KRÖBER, Claudia MERZ, Michael NIEHUES, Martina SCHÄFER, Katja ZIMMERMANN, Carl Friedrich NISING
  • Patent number: 11814687
    Abstract: The present invention features methods for characterizing mutational profiles in patients with bladder cancer.
    Type: Grant
    Filed: August 7, 2020
    Date of Patent: November 14, 2023
    Assignees: The Broad Institute, Inc., The General Hospital Corporation, Baylor College of Medicine, The Brigham and Women's Hospital, Inc., Northwestern University, The Johns Hopkins University, United States Government as represented by the U.S. Department of Veterans Affairs
    Inventors: Jaegil Kim, Gad Getz, Seth Paul Lerner, David Kwiatkowski, Joshua Meeks, Joaquim Bellmunt, David McConkey
  • Publication number: 20230357766
    Abstract: The disclosure provides modified pegRNAs comprising one or more appended nucleotide structural motifs which increase the editing efficiency during prime editing, increase half-life in vivo, and increase lifespan in a cell. Modifications include, but are not limited to, an aptamer (e.g., prequeosim-1 riboswitch aptamer or “evopreQi-1”) or a variant thereof, a pseudoknot (the MMLV viral genome pseudoknot or “Mpknot-1”) or a variant thereof, a tRNA (e.g., the modified tRNA used by MMLV as a primer for reverse transcription) or a variant thereof, or a G-quadruplex or a variant thereof. The disclosure further provides prime editor complexes comprising the modified pegRNAs and having improved characteristics and/or performance, including stability, improved cellular lifespan, and improved editing efficiency.
    Type: Application
    Filed: September 24, 2021
    Publication date: November 9, 2023
    Applicants: The Broad Institute, Inc., President and Fellows of Harvard College
    Inventors: David R. Liu, James William Nelson, Peyton Barksdale Randolph, Andrew Vito Anzalone, Simon Shen, Kelcee Everette, Peter J. Chen
  • Patent number: 11806372
    Abstract: This application provides for methods of treatment for IBD, especially in subjects who have R. gnavus species or R. gnavus group IBD strains as a component of their microbiome. The application also provides for methods of diagnosing IBD, as well as kits for use in the claimed methods.
    Type: Grant
    Filed: April 20, 2018
    Date of Patent: November 7, 2023
    Assignees: The Broad Institute, Inc., The General Hospital Corporation, President and Fellows of Harvard College
    Inventors: Andrew Brantley Hall, Ramnik Xavier, Curtis Huttenhower, Moran Yassour, Hera Vlamakis
  • Publication number: 20230340505
    Abstract: The invention provides for systems, methods, and compositions for manipulation of sequences and/or activities of target sequences. Provided are vectors and vector systems, some of which encode one or more components of a CRISPR complex, as well as methods for the design and use of such vectors. Also provided are methods of directing CRISPR complex formation in eukaryotic cells and methods for selecting specific cells by introducing precise mutations utilizing the CRISPR/Cas system.
    Type: Application
    Filed: March 29, 2023
    Publication date: October 26, 2023
    Applicants: The Broad Institute, Inc., Massachusetts Institute of Technology
    Inventor: Feng Zhang
  • Publication number: 20230340467
    Abstract: Compositions and methods are provided herein for conducting prime editing of a target DNA molecule (e.g., a genome) that enables the incorporation of a nucleotide change and/or targeted mutagenesis. The compositions include fusion proteins comprising nucleic acid programmable DNA binding proteins (napDNAbp) and a polymerase (e.g., reverse transcriptase), which is guided to a specific DNA sequence by a modified guide RNA, named an PEgRNA. The PEgRNA has been altered (relative to a standard guide RNA) to comprise an extended portion that provides a DNA synthesis template sequence which encodes a single strand DNA flap which is synthesized by the polymerase of the fusion protein and which becomes incorporated into the target DNA molecule.
    Type: Application
    Filed: May 31, 2023
    Publication date: October 26, 2023
    Applicants: The Broad Institute, Inc., President and Fellows of Harvard College
    Inventors: David R. Liu, Andrew Vito Anzalone, James William Nelson
  • Publication number: 20230340466
    Abstract: Compositions and methods are provided herein for conducting prime editing of a target DNA molecule (e.g., a genome) that enables the incorporation of a nucleotide change and/or targeted mutagenesis. The compositions include fusion proteins comprising nucleic acid programmable DNA binding proteins (napDNAbp) and a polymerase (e.g., reverse transcriptase), which is guided to a specific DNA sequence by a modified guide RNA, named an PEgRNA. The PEgRNA has been altered (relative to a standard guide RNA) to comprise an extended portion that provides a DNA synthesis template sequence which encodes a single strand DNA flap which is synthesized by the polymerase of the fusion protein and which becomes incoporated into the target DNA molecule.
    Type: Application
    Filed: May 31, 2023
    Publication date: October 26, 2023
    Applicants: The Broad Institute, Inc., President and Fellows of Harvard College
    Inventors: David R. Liu, Andrew Vito Anzalone, James William Nelson
  • Publication number: 20230340465
    Abstract: Compositions and methods are provided herein for conducting prime editing of a target DNA molecule (e.g., a genome) that enables the incorporation of a nucleotide change and/or targeted mutagenesis. The compositions include fusion proteins comprising nucleic acid programmable DNA binding proteins (napDNAbp) and a polymerase (e.g., reverse transcriptase), which is guided to a specific DNA sequence by a modified guide RNA, named an PEgRNA. The PEgRNA has been altered (relative to a standard guide RNA) to comprise an extended portion that provides a DNA synthesis template sequence which encodes a single strand DNA flap which is synthesized by the polymerase of the fusion protein and which becomes incorporated into the target DNA molecule.
    Type: Application
    Filed: May 31, 2023
    Publication date: October 26, 2023
    Applicants: The Broad Institute, Inc., President and Fellows of Harvard College
    Inventors: David R. Liu, Andrew Vito Anzalone, James William Nelson
  • Patent number: 11795443
    Abstract: The disclosure provides methods and compositions for treating blood diseases/disorders, such as sickle cell disease, hemochromatosis, hemophilia, and beta-thalassemia. For example the disclosure provides therapeutic guide RNAs that target the promotor of HBG1/2 to generate point mutations that increase expression of fetal hemoglobin. As another example, the disclosure provides therapeutic guide RNAs that target mutations in HBB, Factor VIII, and HFE to treat sickle cell disease, beta-thalassemia, hemophilia and hemochromatosis. The disclosure also provides fusion proteins comprising a Cas9 (e.g., a Cas9 nickase) domain and adenosine deaminases that deaminate adenosine in DNA. In some embodiments, the fusion proteins are in complex with nucleic acids, such as guide RNAs (gRNAs), which target the fusion proteins to a DNA sequence (e.g., an HBG1 or HBG2 protmoter sequence, or an HFE, GBB, or F8 gene sequence).
    Type: Grant
    Filed: October 16, 2018
    Date of Patent: October 24, 2023
    Assignees: The Broad Institute, Inc., President and Fellows of Harvard College, Beam Therapeutics, Inc.
    Inventors: David R. Liu, Nicole Marie Gaudelli, Michael S. Packer, Gregory Newby
  • Patent number: 11793787
    Abstract: The subject matter disclosed herein is generally directed to modulating anti-tumor T cell immunity by modulating steroidogenesis. Steroidogenesis may be modulated with inhibitors of enzymes that synthesize glucocorticoids in a tumor. The inhibitor may target Cyp11a1. The inhibitor may be metyrapone. The invention further relates to modulating immune states, such as CD8 T cell immune states, in vivo, ex vivo and in vitro. The invention further relates to diagnostic and screening methods.
    Type: Grant
    Filed: October 7, 2020
    Date of Patent: October 24, 2023
    Assignees: The Broad Institute, Inc., Massachusetts Institute of Technology, The Brigham and Women's Hospital, Inc.
    Inventors: Ana Carrizosa Anderson, Asaf Madi, Nandini Acharya, Vijay K. Kuchroo, Aviv Regev
  • Patent number: 11795452
    Abstract: Compositions and methods are provided herein for conducting prime editing of a target DNA molecule (e.g., a genome) that enables the incorporation of a nucleotide change and/or targeted mutagenesis. The compositions include fusion proteins comprising nucleic acid programmable DNA binding proteins (napDNAbp) and a polymerase (e.g., reverse transcriptase), which is guided to a specific DNA sequence by a modified guide RNA, named a PEgRNA. The PEgRNA has been altered (relative to a standard guide RNA) to comprise an extended portion that provides a DNA synthesis template sequence which encodes a single strand DNA flap which is synthesized by the polymerase of the fusion protein and which becomes incorporated into the target DNA molecule.
    Type: Grant
    Filed: May 23, 2022
    Date of Patent: October 24, 2023
    Assignees: The Broad Institute, Inc., President and Fellows of Harvard College
    Inventors: David R. Liu, Andrew Vito Anzalone