Abstract: The invention provides stabilized, biocompatible gold nanoparticles that are stabilized with material from soy or lentil plant material or a reactive extract thereof of the plant material. The gold nanoparticles of the invention can be fabricated with an environmentally friendly method for making biocompatible stabilized gold nanoparticles. The nanoparticles can be introduced in vivo to conduct enhanced imaging. The nanoparticles can also be introduced in vivo to conduct therapy.
Type:
Grant
Filed:
October 25, 2013
Date of Patent:
July 4, 2017
Assignee:
The Curators of University of Missouri
Inventors:
Kattesh V. Katti, Raghuraman Kannan, Kavita K. Katti, Nripen Chanda, Ravi Shukla
Abstract: An internal channel in a metal body for use in applications where internal fluid flow within a metal body is desired, as in a heat exchanger. The internal channel is formed in the metal body by frictionally stirring with a pin plunged into the metal body, and traversing the metal body with the pin.
Abstract: Corrosion resistance of metallic components such as stainless steel components of vehicles, and especially aluminum-based components of aircraft, is enhanced by application of an e-coat paint or primer which is enhanced by incorporation of cerium ions into the e-coat electrolytic bath. The resulting overall coating includes a cerium-based layer under a cerium-enhanced e-coat paint or primer layer.
Type:
Grant
Filed:
August 17, 2001
Date of Patent:
July 10, 2007
Assignee:
The Curators of University of Missouri
Inventors:
James O. Stoffer, Thomas J. O'Keefe, Eric L. Morris, Xuan Lin, Scott A. Hayes, Pu Yu
Abstract: An internal channel in a metal body for use in applications where internal fluid flow within a metal body is desired, as in a heat exchanger. The internal channel is formed in the metal body by frictionally stirring with a pin plunged into the metal body, and traversing the metal body with the pin.
Abstract: An internal channel in a metal body for use in applications where internal fluid flow within a metal body is desired, as in a heat exchanger. The internal channel is formed in the metal body by frictionally stirring with a pin plunged into the metal body, and traversing the metal body with the pin.
Abstract: A method for forming a miniaturized shaped component. Bulk superplastic material is contacted with a flat rotating surface of a rotating tool to frictionally heat the bulk superplastic material with the bulk superplastic material positioned between the flat rotating surface of the tool and a microfabricated tool die. The bulk superplastic material is forced into the microfabricated die once the bulk superplastic material is heated to a temperature between a glass transition temperature and a crystallization temperature.