Patents Assigned to The Government of the United States of America, as represented by the Secretary by the Navy
  • Publication number: 20240136180
    Abstract: A method for growing nanocrystalline diamond (NCD) on Ga2O3 to provide thermal management in Ga2O3-based devices. A protective SiNx interlayer is deposited on the Ga2O3 before growth of the NCD layer to protect the Ga2O3 from damage caused during growth of the NCD layer. The presence of the NCD provides thermal management and enables improved performance of the Ga2O3-based device.
    Type: Application
    Filed: October 19, 2023
    Publication date: April 25, 2024
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Marko J. Tadjer, Joseph A. Spencer, Alan G. Jacobs, Hannah N. Masten, James Spencer Lundh, Karl D. Hobart, Travis J. Anderson, Tatyana I. Feygelson, Bradford B. Pate, Boris N. Feigelson
  • Publication number: 20240118144
    Abstract: Methods providing distributed temperature and strain measurements are disclosed. Brillouin pump laser pulses having a Brillouin pump frequency are coupled into a first end of an optical fiber. Brillouin Stokes and Anti-Stokes probe laser beams are coupled into a second end of the fiber. The Stokes probe laser beam has a Stokes probe frequency. The Anti-Stokes probe laser beam has an Anti-Stokes probe frequency. The Stokes and Anti-Stokes probe frequencies and the pump frequency are included in a Brillouin frequency band. A train of Rayleigh seed pulses are coupled into the fiber. Each of the seed pulses of the train has a respective different frequency included in a Rayleigh frequency band. Frequencies of the Brillouin frequency band are coupled to a Brillouin detector, and Rayleigh backscatter signals are coupled to a Rayleigh detector. Brillouin and Rayleigh detector outputs are used to calculate the measurements. Related sensors are also disclosed.
    Type: Application
    Filed: September 26, 2023
    Publication date: April 11, 2024
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Matthew Joseph Murray, Joseph Brady Murray, Hannah Marie Ogden, Brandon F. Redding
  • Publication number: 20240118076
    Abstract: A method of determining ocean state. The method may include receiving, by a processing device, data associated with a prior ocean forecast state, and receiving, by the processing device, data associated with a first set of ocean temperature and salinity observations. The method may include receiving, by the processing device, data associated with a first set of ocean acoustic pressure observations. The method may include determining, by the processing device, a correction to the prior ocean forecast state based on a forward acoustic model, on an adjoint acoustic model, on the data associated with a first set of ocean temperature and ocean salinity observations, and on the data associated with a first set of ocean acoustic pressure observations, and generating, by the processing device, a current ocean state based on the determined correction.
    Type: Application
    Filed: September 21, 2023
    Publication date: April 11, 2024
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Matthew J. Carrier, Hans E. Ngodock, Josette P. Fabre
  • Publication number: 20240120201
    Abstract: A technique for selective-area diffusion doping of III-N epitaxial material layers and for fabricating power device structures utilizing this technique. Dopant species such as Mg are introduced into the III-N material layer and are diffused into the III-N material by annealing under stable or metastable conditions. The dopant species can be introduced via deposition of a metal or alloy layer containing such species using sputtering, e-beam evaporation or other technique known to those skilled in the art. The dopant material layer is capped with a thermally stable layer to prevent decomposition and out-diffusion, and then is annealed under stable or metastable conditions to diffuse the dopant into the III-N material GaN without decomposing the surface.
    Type: Application
    Filed: March 31, 2023
    Publication date: April 11, 2024
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Travis J. Anderson, Mona A. Ebrish, Alan G. Jacobs, Karl D. Hobart, Francis J. Kub
  • Patent number: 11944011
    Abstract: Thermoelectric (TE) nanocomposite material that includes at least one component consisting of nanocrystals. A TE nanocomposite material in accordance with the present invention can include, but is not limited to, multiple nanocrystalline structures, nanocrystal networks or partial networks, or multi-component materials, with some components forming connected interpenetrating networks including nanocrystalline networks. The TE nanocomposite material can be in the form of a bulk solid having semiconductor nanocrystallites that form an electrically conductive network within the material.
    Type: Grant
    Filed: December 2, 2022
    Date of Patent: March 26, 2024
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Boris N. Feigelson, Kevin P. Anderson, Benjamin L. Greenberg, James A. Wollmershauser, Alan G. Jacobs
  • Patent number: 11939787
    Abstract: A rapidly deployable structure that includes a first and second hub, a plurality of legs and a rod connected to the first hub. The first hub includes first recesses. The second hub includes second recesses and an alignment guide. Each leg is connected to the first hub and the second hub. The rod connected is to the first hub and includes pins that are movable between an extended state, where pins protrude from the rod, and a retracted state where the pins are retracted within the rod. The first hub is movable relative to the second hub between a first state in which the rod is disposed above the alignment guide in an axial direction defined by an opening in the alignment guide and a second state in which a portion of the rod comprising the pins is below the alignment guide in the axial direction.
    Type: Grant
    Filed: July 27, 2021
    Date of Patent: March 26, 2024
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Edward Michaelchuck, Scott Ramsey, Christopher Strem
  • Patent number: 11939276
    Abstract: A nanoparticle of a decomposition product of a transition metal aluminum hydride compound, a transition metal borohydride compound, or a transition metal gallium hydride compound. A process of: reacting a transition metal salt with an aluminum hydride compound, a borohydride compound, or a gallium hydride compound to produce one or more of the nanoparticles. The reaction occurs in solution while being sonicated at a temperature at which the metal hydride compound decomposes. A process of: reacting a nanoparticle with a compound containing at least two hydroxyl groups to form a coating having multi-dentate metal-alkoxides.
    Type: Grant
    Filed: December 3, 2020
    Date of Patent: March 26, 2024
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Albert Epshteyn, Zachary J. Huba
  • Publication number: 20240094425
    Abstract: A detector for detecting optically undetectable sub-cm orbital debris. A ring detector comprising a current pulse transformer (CPT) in which a conducting wire coil is wrapped around a loop of high permeability material having a magnetic nanoparticle (MNP) core. Debris objects in low earth orbit become charged as they pass through local plasma. As each charged debris object passes through the coil-wrapped loop, its current generates an induced voltage pulse, which can be used to detect the presence of the debris object. By fielding such a detector on a satellite, a long duration survey of the debris distribution in the LEO region can be made as the satellite's altitude is systematically varied.
    Type: Application
    Filed: March 3, 2023
    Publication date: March 21, 2024
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: William E. Amatucci, Gurudas I. Ganguli, Abhijit Sen, Christopher Crabtree
  • Patent number: 11937361
    Abstract: A cathode emitter assembly includes a cathode tube having a gas feed portion and a plasma outflow portion; an outer annular cathode insert in the plasma outflow portion of the cathode tube; an inner cathode insert in the plasma outflow section of the cathode tube; and an annular plasma emission portion defined between an inner surface of the outer annular cathode insert and an outer surface of the inner cathode insert.
    Type: Grant
    Filed: February 9, 2022
    Date of Patent: March 19, 2024
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Michael McDonald, Marcel Georgin
  • Publication number: 20240083754
    Abstract: Disclosed is a method of irradiating a composition having water and hydrogen-terminated nanodiamonds with light that generates water-solvated electrons from the nanodiamonds. The method can be used to degrade fluoroalkyl compounds such as perfluorooctane sulfonate.
    Type: Application
    Filed: November 21, 2023
    Publication date: March 14, 2024
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Bradford B. Pate, William Maza, Vanessa Breslin, Paul A. DeSario, Tatyana I. Feygelson, Albert Epshteyn, Jeffrey C. Owrutsky, Carlos Hangarter
  • Patent number: 11920035
    Abstract: This disclosure concerns electrically conducting poly(pyrazoles). The concept of oligomerizing and polymerizing substituted aminopyrazole derivatives combined with a monomer activation procedure involving base-mediated conversion of the protonated pyrazole ring nitrogen to amine salt was developed. This disclosure concerns the specific chemistries needed for the synthesis of a pyrazole monomer used in the polymer synthesis. The procedure used for blending the novel polypyrazoles with other compounds needed for construction of solar cells for testing was developed. This disclosure concerns the concept of using these types of heteroatom-rich, electron-deficient oligomers or polymers as n-dopable or p-dopable electron acceptors in photovoltaic cells. This disclosure concerns synthesizing the starting monomer compounds and polypyrazoles.
    Type: Grant
    Filed: October 25, 2022
    Date of Patent: March 5, 2024
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Brett D. Martin, Ian D. Giles, Jawad Naciri, Paul T. Charles, Scott A. Trammell, Jeffrey R. Deschamps, Jeffrey C. Depriest
  • Publication number: 20240068106
    Abstract: Deposition of Pt nanoparticles on UiO metal organic frameworks via solvothermal reduction is achieved by reducing Pt acetylacetonate (Pt(acac)2) in a UiO-66 and N,N-dimethylformamide (DMF) mixture at, for example, 130° C. for 18 hrs. Modification of reaction temperature and time can control the size of the Pt nanoparticles.
    Type: Application
    Filed: August 28, 2023
    Publication date: February 29, 2024
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Hannah Marie Ashberry, Albert Epshteyn, James A. Ridenour, William A. Maza, Olga Baturina
  • Publication number: 20240067780
    Abstract: Described herein is the preparation of solid acid fuel cell (SAFC) electrode materials suitable for intermediate temperature (200° C.-300° C.) oxygen reduction reaction (ORR) catalysis via anaerobic, in vacuo pyrolysis of metal-organic coordination polymer precursor materials with divalent metals (e.g. Pt or Pd) as nodes to form small, catalytically active nanoparticles inside a porous, electrically conductive carbonized framework.
    Type: Application
    Filed: August 30, 2023
    Publication date: February 29, 2024
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: James A. Ridenour, Olga Baturina, Albert Epshteyn, Bethany Hudak, Hannah Marie Ashberry
  • Patent number: 11912606
    Abstract: This application relates generally to an optical fiber for the delivery of infrared light where the polarization state of the light entering the fiber is preserved upon exiting the fiber and the related methods for making thereof. The optical fiber has a wavelength between about 0.9 ?m and 15 ?m, comprises at least one infrared-transmitting glass, and has a polarization-maintaining (PM) transverse cross-sectional structure. The infrared-transmitting, polarization-maintaining (IR-PM) optical fiber has a birefringence greater than 10?5 and has applications in dual-use technologies including laser power delivery, sensing and imaging.
    Type: Grant
    Filed: April 7, 2020
    Date of Patent: February 27, 2024
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Daniel J. Gibson, Daniel Rhonehouse, Shyam S. Bayya, L. Brandon Shaw, Rafael R. Gattass, Jesse A. Frantz, Jason D. Myers, Woohong Kim, Jasbinder S. Sanghera
  • Patent number: 11904992
    Abstract: The invention relates to a payload frame for deploying a payload underwater. The payload frame includes at least three lead screws, each lead screw connected near a top end of the lead screw to the payload by a corresponding spherical bearing; at least three motors, each motor connected to a bottom end of one of the lead screws, the motor to rotate the lead screw through the corresponding spherical bearing; at least three feet, each foot attached to one of the motors, the feet to support and secure the payload frame on a water body bed; an accelerometer attached to the payload, the accelerometer to measure gravity vectors of the payload; and a microcontroller connected to the accelerometer and the motors. The microcontroller to receive the gravity vectors from the accelerometer and control each of the motors based on the gravity vectors to position the payload in a target orientation.
    Type: Grant
    Filed: April 21, 2021
    Date of Patent: February 20, 2024
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Christopher M Price, Paul R Leary, Brian S Bingham
  • Publication number: 20240043601
    Abstract: Disclosed herein is a method and thermoset made by: reacting a di- or tri-functional isocyanate with a silyl-containing compound to form a polyurethane having at least one unreacted isocyanate group, reacting the polyurethane with an aminoalkylalkoxysilane to form an alkoxysilane-terminated polyurethane, and moisture-curing the alkoxysilane-terminated polyurethane to form the thermoset. The silyl-containing compound has the formula: SiR1n[R3—(O—CO—X—R3)m—OH]4-n. Each X is —O— or —NR2—; each R1 is an alkyl group or an aryl group; each R2 is —H, an alkyl group, or an aryl group; each R3 is an alkylene group; n is 0, 1, or 2; and each m is a non-negative integer. The thermoset may be degraded by treatment with a solution of a fluoride salt in an organic solvent.
    Type: Application
    Filed: July 19, 2023
    Publication date: February 8, 2024
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Erick B. Iezzi, Keith B. Sutyak, Grant C. Daniels, Eugene Camerino
  • Patent number: 11894449
    Abstract: Heterostructures include a layer of a two-dimensional material placed on a multiferroic layer. An ordered array of differing polarization domains in the multiferroic layer produces corresponding domains having differing properties in the two-dimensional material. When the multiferroic layer is ferroelectric, the ferroelectric polarization domains in the layer produce local electric fields that penetrate the two-dimensional material. The local electric fields modulate the charge carriers and carrier density on a nanometer length scale, resulting in the formation of lateral p-n or p-i-n junctions, and variations thereof appropriate for device functions.
    Type: Grant
    Filed: September 28, 2022
    Date of Patent: February 6, 2024
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Berend T. Jonker, Connie H. Li, Kathleen M. McCreary, Olaf M. J. van't Erve
  • Patent number: 11890598
    Abstract: A supported heterogeneous catalyst material for catalyzing the reverse water-gas shift (RWGS) reaction for the selective formation of CO using an alkali metal-doped molybdenum carbide on a gamma alumina support (A-Mo2C/?-Al2O3, A=K, Na, Li). The A-Mo2C/?-Al2O3 catalyst is synthesized by co-impregnation of molybdemun and alkali metal precursors onto a ?-Al2O3 support. It is then carburized to form the A-Mo2C/?-Al2O3.
    Type: Grant
    Filed: March 7, 2022
    Date of Patent: February 6, 2024
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Marc Porosoff, Heather D. Willauer
  • Patent number: 11888312
    Abstract: A solid state circuit breaker that may include a metal oxide varistor (MOV) that is connected in series to a thyristor, the MOV to clamp voltage of current flowing through the solid state circuit breaker; the thyristor including a gate to control flow of the current to the MOV along a first path to the MOV; a breakover diode to activate at a target voltage level to allow the current to flow to the MOV along a second path; and a Zener diode to close the gate and allow current to flow along the first path in response to the current on the second path.
    Type: Grant
    Filed: March 1, 2022
    Date of Patent: January 30, 2024
    Assignee: The Government of the United States of America,represented by the Secretary of the Navy
    Inventor: Di Zhang
  • Patent number: 11885801
    Abstract: The present invention provides for a release system for delaying application of chemical reagents in a lateral-flow immunoassay. A chemistry release fiber comprising a permeable membrane and a chemical release agent is used to delay chemical reagent delivery to the indicator of a lateral-flow immunoassay. Also disclosed is the related method of delaying application of chemical reagents in a lateral-flow immunoassay.
    Type: Grant
    Filed: August 19, 2021
    Date of Patent: January 30, 2024
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventor: David A. Kidwell