Patents Assigned to The Government of the United States of America, as represented the Secretary of the Navy
  • Patent number: 10793865
    Abstract: A prokaryotic protein appearing to have a Bin/Amphiphysin/Rvs (BAR) domain, previously known in eukaryotes, has been identified. Expression of this protein causes formation of outer membrane extensions.
    Type: Grant
    Filed: May 24, 2019
    Date of Patent: October 6, 2020
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Daniel A. Phillips, Sarah M. Glaven
  • Patent number: 10793265
    Abstract: An expendable rotary wing unmanned aircraft capable of storage in a cylindrical housing includes a longitudinally extending body having an upper end and a lower end; and a pair of counter-rotating coaxial rotors each located at respective ends of longitudinally-extending body, wherein each rotor includes two or more blades, each blade rotatably coupled to a remainder of the rotor at a hinged joint and thereby extending along a length of the body in a storage configuration and extending radially outward from the body in a flight configuration.
    Type: Grant
    Filed: March 30, 2018
    Date of Patent: October 6, 2020
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventor: Steven K. Tayman
  • Patent number: 10780185
    Abstract: A construct for detecting cellular membrane potential includes a nanoparticle operable as an electron donor; a modular peptide attached to the nanoparticle, the peptide comprising a nanoparticle association domain, a motif configured to mediate peptide insertion into the plasma membrane, and at least one attachment point for an electron acceptor positioned at a controlled distance from the nanoparticle; and an electron acceptor. The nanoparticle can be a quantum dot and the electron acceptor can be C60 fullerene. Photoacoustic emission from the construct correlates with cellular membrane potential.
    Type: Grant
    Filed: July 10, 2018
    Date of Patent: September 22, 2020
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: James B. Delehanty, Michael H. Stewart, Okhil Nag, Jeffrey R. Deschamps, Kimihiro Susumu, Eunkeu Oh, Lauren D. Field, Alexander L. Efros, Alan L. Huston, Igor L. Medintz, Philip E. Dawson, Nashaat Rasheed, Parag V. Chitnis, John R. Cressman
  • Patent number: 10775459
    Abstract: The invention relates to compounds known as “optorelaxers,” for example, spin crossover (SCO) complexes that exhibit light-induced excited state spin trapping (LIESST) effects with transient unpaired electron spins, which are created (or destroyed) by varying the level and/or wavelength of light to which the complexes are exposed. Light conditions are used to switch the optorelaxers between transient paramagnetic and diamagnetic states to provide real-time control of T1 relaxation in nuclear magnetic resonance (NMR) spectroscopy methods. The optorelaxers and methods of the invention provide increased detection sensitivity of NMR spectroscopy, with increased structural information content, while maintaining resolution for a wide variety of different NMR-active nuclei.
    Type: Grant
    Filed: July 23, 2018
    Date of Patent: September 15, 2020
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: James P. Yesinowski, Joel B. Miller, Christopher A. Klug
  • Patent number: 10777644
    Abstract: Current conducting devices and methods for their formation are disclosed. Described are vertical current devices that include a substrate, an n-type material layer, a plurality of p-type gates, and a source. The n-type material layer disposed on the substrate and includes a current channel. A plurality of p-type gates are disposed on opposite sides of the current channel. A source is disposed on a distal side of the current channel with respect to the substrate. The n-type material layer comprises beta-gallium oxide.
    Type: Grant
    Filed: April 27, 2018
    Date of Patent: September 15, 2020
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Francis J. Kub, Travis J. Anderson, Marko J. Tadjer, Andrew D. Koehler, Karl D. Hobart
  • Patent number: 10771176
    Abstract: A communication system includes a repetitive orthogonal frequency-division multiplexing (“ROFDM”) transmitter communicating with an ROFDM receiver. The ROFDM transmitter includes an ROFDM modulator, which includes a K-point Fast Fourier Transform receiving a block of time-domain data symbols and generating an initial orthogonal frequency-division multiplexing symbol. The initial orthogonal frequency-division multiplexing symbol is based on a block of frequency-domain data symbols corresponding to the block of time-domain data symbols. The initial orthogonal frequency-division multiplexing symbol includes an ending part. The ROFDM modulator includes an orthogonal frequency-division multiplexing symbol repeater generating a repetitive orthogonal frequency-division multiplexing symbol by repeatedly reproducing the initial orthogonal frequency-division multiplexing symbol.
    Type: Grant
    Filed: January 15, 2019
    Date of Patent: September 8, 2020
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventor: Zhiqiang Liu
  • Patent number: 10763500
    Abstract: An article having a continuous network of zinc and a continuous network of void space interpenetrating the zinc network. The zinc network is a fused, monolithic structure. A method of: providing an emulsion having a zinc powder and a liquid phase; drying the emulsion to form a sponge; annealing and/or sintering the sponge to form an annealed and/or sintered sponge; heating the annealed and/or sintered sponge in an oxidizing atmosphere to form an oxidized sponge having zinc oxide on the surface of the oxidized sponge; and electrochemically reducing the zinc oxide to form a zinc metal sponge.
    Type: Grant
    Filed: August 2, 2017
    Date of Patent: September 1, 2020
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Joseph F. Parker, Jeffrey W. Long, Debra R. Rolison
  • Patent number: 10761028
    Abstract: Methods and systems for determining extracellular concentration data of an analyte are disclosed. A method for determining extracellular concentration data of an analyte includes receiving sensor data from one or more arrays of functionalized plasmonic nanostructures on a localized surface plasmon resonance imaging chip in contact with a fluid containing at least one living cell for a plurality of times, determining intensity data for the one or more arrays, determining fractional occupancy based on the intensity data, and determining extracellular concentration data based on the fractional occupancy data. A system for determining extracellular concentration data of an analyte includes a LSPRi chip, a sensor component, an intensity component, a fractional occupancy component, a concentration component, and a processor to implement the components.
    Type: Grant
    Filed: June 20, 2016
    Date of Patent: September 1, 2020
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Marc P. Raphael, Joseph A. Christodoulides, Jeff M. Byers, James B. Delehanty
  • Patent number: 10762954
    Abstract: Devices and methods for the detection of magnetic fields, strain, and temperature using the spin states of a VSi? monovacancy defect in silicon carbide, as well as quantum memory devices and methods for creation of quantum memory using the spin states of a VSi? monovacancy defect in silicon carbide.
    Type: Grant
    Filed: November 15, 2019
    Date of Patent: September 1, 2020
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Öney Soykal, Thomas L. Reinecke, Samuel G. Carter
  • Patent number: 10762925
    Abstract: A patterned magnetic graphene made from the steps of transferring or growing a graphene film on a substrate, functionalizing the graphene film, hydrogenating the graphene film and forming fully hydrogenated graphene, manipulating the extent of the hydrogen content by using an electron beam from a scanning electron microscope to selectively remove hydrogen, wherein the step of selectively removing hydrogen occurs under a vacuum, and forming areas of magnetic graphene and non-magnetic graphene. A ferromagnetic graphene film comprising film that has a thickness of less than two atom layers thick.
    Type: Grant
    Filed: October 10, 2018
    Date of Patent: September 1, 2020
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Woo K. Lee, Keith E. Whitener, Paul E. Sheehan
  • Patent number: 10763537
    Abstract: The disclosure provides a method a method for generating a heterogeneous carbon-bonded material using an activated carbon support a solution comprising a material precursor and a chemical agent. The material precursor is typically a salt such as SnCl2, and the chemical agent is a substance which thermally decomposes to generate reducing gases. The mixture is heated in an inert, nonreactive atmosphere to generate the reducing gases and remove surface groups from the carbon support, allowing material such as metal from the material precursor to nucleate and directly bond to the sites. The method typically utilizes high specific surface area carbon and may produce a plurality of metal particles having an average diameter of less than about 20 nm dispersed on and strongly bonded to the underlying carbon support.
    Type: Grant
    Filed: June 16, 2017
    Date of Patent: September 1, 2020
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Jonathan Phillips, Claudia C. Luhrs
  • Patent number: 10759052
    Abstract: An apparatus and system for launching and/or capturing an unmanned aerial vehicle (UAV). The apparatus includes a moving substrate having an electromagnetic end effector and a UAV with a metallic strike plate to be attracted to the end effector when the electromagnet is activated. The system includes a movable robotic arm having a free end and a secured end; an electromagnetic end effector connected proximate to the free end of the robotic arm; a UAV with a metallic strike to be attracted and held to the electromagnetic end effector when the electromagnetic end effector is active; trajectory software configured to control a location of the free end of the robotic arm; and a control module for receiving input data, analyzing the data and using the trajectory software to control the location of and activate or deactivate the electromagnetic end effector. Also described are methods for launching and capturing the UAV.
    Type: Grant
    Filed: July 30, 2018
    Date of Patent: September 1, 2020
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Gregory P. Scott, Andrew Bolkhovitinov
  • Patent number: 10751801
    Abstract: A new Enhanced High Pressure Sintering (EHPS) method for making three-dimensional fully dense nanostructures and nano-heterostructures formed from nanoparticle powders, and three-dimensional fully dense nanostructures and nano-heterostructures formed using that method. A nanoparticle powder is placed into a reaction chamber and is treated at an elevated temperature under a gas flow to produce a cleaned powder. The cleaned powder is formed into a low density green compact which is then sintered at a temperature below conventional sintering temperatures to produce a fully dense bulk material having a retained nanostructure or nano-heterostructure corresponding to the nanostructure of the constituent nanoparticles. All steps are performed without exposing the nanoparticle powder to the ambient.
    Type: Grant
    Filed: November 14, 2014
    Date of Patent: August 25, 2020
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Boris N. Feigelson, James A. Wollmershauser
  • Publication number: 20200266061
    Abstract: A method of making a crystallographically-oriented metallic film with a two-dimensional crystal layer, comprising the steps of providing a metal film on a substrate, transferring a two-dimensional crystal layer onto the metal film and forming a two-dimensional crystal layer on metal film complex, heating the two-dimensional crystal layer on metal film complex, and forming a crystallographically-oriented metallic film with a two-dimensional crystal layer. A crystallographically-oriented metallic film with a two-dimensional crystal layer, comprising a substrate, a metal film on the substrate, a two-dimensional crystal layer on the metal film on the substrate, and a tunable microstructure within the porous metal/two-dimensional crystal layer on the substrate, wherein the metal film has crystallographic registry to the two-dimensional crystal layer.
    Type: Application
    Filed: January 28, 2020
    Publication date: August 20, 2020
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Jeremy T. Robinson, Jose J. Fonseca Vega, Maxim K. Zalalutdinov, III
  • Publication number: 20200261939
    Abstract: An apparatus having: a vessel for containing a suspension of a liquid and solid particles; a tube having a narrowed portion to draw the suspension from the vessel into the tube when a gas flows through the tube; an aerosol generator coupled to the tube for forming an aerosol from the suspension; a dehydrator coupled to the aerosol generator for removing the liquid from the aerosol forming a dried aerosol; a multiple-pass spectroscopic absorption cell coupled to the dehydrator to pass the dried aerosol into the absorption cell; and a Fourier transform spectrometer coupled to the absorption cell to measure an absorption spectrum of the dried aerosol.
    Type: Application
    Filed: February 7, 2020
    Publication date: August 20, 2020
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Jake Fontana, Jawad Naciri
  • Publication number: 20200262529
    Abstract: A docking system has flat funnel and a slotted ramp at the end of the flat funnel. The slotted ramp has a plurality of inclined planes, each on a respective side of the slot. A docking adapter, fitted over an underwater vehicle, includes a guide plane and a mask. The flat funnel guides the guide plane to the top of the ramp during docking, so that the underwater vehicle may be charged. Another aspect of the invention is a highly maneuverable glider including a forwardly mounted buoyancy module followed a pitch module, followed by a processing module, followed by a roll module, mounted concentrically with respect to each other. The glider may be attached to any docking system, not just that of the present invention. When used in conjunction with the docking system of the present invention, the glider may be attached to either the flat funnel or the docking adapter of the docking system of the present invention.
    Type: Application
    Filed: May 1, 2020
    Publication date: August 20, 2020
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Nina Mahmoudian, Brian Page
  • Patent number: 10741914
    Abstract: Structures and configurations for planar ultrawideband modular antenna arrays. One example of a PUMA array includes an unbalanced RF interface, a lattice of horizontal dipole segments directly fed with the unbalanced RF interface, the lattice being arranged in either a dual-offset dual-polarized configuration or a single-polarization configuration, and a metallic plate capacitively-coupled to the lattice of horizontal dipole segments and pinned to a ground plane with a first plated via.
    Type: Grant
    Filed: February 25, 2016
    Date of Patent: August 11, 2020
    Assignees: UNIVERSITY OF MASSACHUSETTS, THE GOVERNMENT OF THE UNITED STATES OF AMERICA, AS REPRESENTED BY THE SECRETARY OF THE NAVY
    Inventors: Marinos N. Vouvakis, Rick W. Kindt, John T. Logan
  • Patent number: 10739650
    Abstract: An electro-optical liquid crystal cell comprising a first substrate, a first layer of indium tin oxide (ITO) on the first substrate, a first layer of h-BN on the first layer of ITO on the first substrate, and a layer of liquid crystal on the first layer of h-BN on the first layer of ITO on the first substrate. Furthermore, the electro-optical liquid crystal cell can comprise a second layer of h-BN, a second layer of ITO, and a second substrate. This h-BN cell exhibits the required electro-optic effect needed for a liquid crystal display. This h-BN cell exhibits high optical transmission.
    Type: Grant
    Filed: October 17, 2019
    Date of Patent: August 11, 2020
    Assignee: The Government of the United States of America, as represented the Secretary of the Navy
    Inventor: Rajratan Basu
  • Publication number: 20200247736
    Abstract: Disclosed is a method of: providing a fiber having propylene oxide adsorbed thereon; exposing the fiber to a gaseous sample; allowing the propylene oxide to react with any chlorine in the sample to form chloro-2-propanol. The method can be used to detect potassium chlorate.
    Type: Application
    Filed: January 31, 2020
    Publication date: August 6, 2020
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Lauryn E. DeGreeff, Janet M. Crespo Cajigas
  • Publication number: 20200247914
    Abstract: Disclosed is a method of: providing a solution having a solvent, a polybutadiene, and an acrylate; and functionalizing the polybutadiene with the diacrylate to produce an ionic polymer. The polymer may be useful as an additive manufacturing binder.
    Type: Application
    Filed: February 4, 2020
    Publication date: August 6, 2020
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Riccardo Casalini, James Hemmer, Brian Mason