Patents Assigned to The Government of the United States of Americas, as represented by the Secretary of the Navy
  • Publication number: 20230352571
    Abstract: Semiconductor heterostructures having an engineered polarization. Semiconductor materials having specified crystallographic directions and specified polarizations are directly bonded to one another by means of atomic layer bonding without the use of any interfacial bonding materials, where spontaneous polarization of the two layers produced by joining the two materials by direct wafer bonding produces a strong 2DEG or 2DHG at the interface. Embodiments include GaN/AIN and AlN/GaN heterostructures having an N- or Ga-polar GaN layer directly bonded to an N- or Al-polar Al layer. Other embodiments can incorporate an InN epitaxial layer or an alloy incorporating an N-polar, Al-polar, or Ga-polar material having In, Al, or Ga in the crystal lattice, e.g., (InxAl1-xN), InxGa1-xN, AlxGa1-xN, InxAlyGa1-x-yN, where (0<x?1, 0<y?1, 0<x+y?1).
    Type: Application
    Filed: April 28, 2022
    Publication date: November 2, 2023
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Karl D. Hobart, Marko J. Tadjer, Michael A. Mastro, Mark Goorsky, Asif Khan, Samuel Graham, JR.
  • Publication number: 20230352541
    Abstract: Semiconductor heterostructures having an engineered polarization. Semiconductor materials having specified crystallographic directions and specified polarizations are directly bonded to one another by means of atomic layer bonding without the use of any interfacial bonding materials, where spontaneous polarization of the two layers produced by joining the two materials by direct wafer bonding produces a strong 2DEG or 2DHG at the interface. Embodiments include GaN/AlN and AlN/GaN heterostructures having an N- or Ga-polar GaN layer directly bonded to an N- or Al-polar Al layer. Other embodiments can incorporate an InN epitaxial layer or an alloy incorporating an N-polar, Al-polar, or Ga-polar material having In, Al, or Ga in the crystal lattice, e.g., (InxAl1-xN), InxGa1-xN, AlxGa1-xN, InxAlyGa1-x-yN, where (0<x?1, 0<y?1, 0<x+y?1).
    Type: Application
    Filed: April 28, 2022
    Publication date: November 2, 2023
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Karl D. Hobart, Marko J. Tadjer, Michael A. Mastro, Mark Goorsky, Asif Khan, Samuel Graham, Jr.
  • Publication number: 20230352600
    Abstract: Ga2O3-based rectifier structure and method of forming the same. A Schottky diode structure is combined with a metal-oxide-semiconductor structure to provide a metal oxide-type Schottky barrier diode (MOSSBD) rectifier that includes an n-type ?-Ga2O3 drift layer on a ?-Ga2O3 substrate, the drift layer having a plurality of spaced-apart semi-insulating regions formed by in-situ ion implantation of acceptor species at predefined spatially defined regions of the drift layer to create alternating areas of n-type and semi-insulating regions within the n-type drift layer. The thus-formed structure achieves high forward bias current with low specific on-resistance when the anode is biased with positive voltage and low leakage current when the device is operated under reverse bias.
    Type: Application
    Filed: April 28, 2023
    Publication date: November 2, 2023
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Marko J. Tadjer, Hannah N. Masten, Joseph A. Spencer, Alan G. Jacobs, Karl D. Hobart, Yuhao Zhang
  • Publication number: 20230348055
    Abstract: A method of designing a morphable aerodynamic surface includes discretizing and parameterizing a model of a morphable surface to create a function to optimize; utilizing finite element analysis to solve for displacements and associated errors at an initialization point; and iteratively calculating a gradient cost function, define step size and search direction, step according to defined step size and search direction, and recalculate displacements and associated errors to converge on final thickness vector.
    Type: Application
    Filed: April 11, 2023
    Publication date: November 2, 2023
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventor: Brandon Powell
  • Patent number: 11804907
    Abstract: A finite rate of innovation (FRI) communications system includes a reference signal generator, an FRI modulator configured to apply an FRI kernel and encode information onto the reference signal, and a transmitter configured to transmit the encoded signal. The FRI kernel is one of a sinc function kernel or a Gaussian kernel. A receiver unit is configured to receive an encoded signal, convert the encoded signal into a digital signal, and demodulate and recover information from finite rate of innovation parameters in the digital signal.
    Type: Grant
    Filed: July 14, 2021
    Date of Patent: October 31, 2023
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventor: Joshua Beun
  • Patent number: 11802323
    Abstract: An aluminum magnesium alloy with reduced Samson phase at grain boundaries made from the method of providing aluminum in a container, adding boron to the container, providing an inert atmosphere, arc-melting the aluminum and the boron, and mixing the aluminum and the boron in the container to form an alloy mixture. A method of suppressing the Samson phase, Al3Mg2, at grain boundaries in Aluminum, comprising providing aluminum in a container, adding boron to the container, providing an inert atmosphere, arc-melting the aluminum and the boron, and mixing the aluminum and the boron in the container to form an alloy mixture.
    Type: Grant
    Filed: May 4, 2021
    Date of Patent: October 31, 2023
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Ramasis Goswami, Syed B. Qadri
  • Patent number: 11803120
    Abstract: A method of graphene-enabled block copolymer lithography transfer to an arbitrary substrate comprising the steps of applying graphene on a surface, adding block copolymers to the graphene on the surface, phase-separating the block copolymers, forming nanopatterned phase separated block copolymers, delaminating the graphene, and transferring the graphene and nanopatterned phase separated block copolymers to a second surface. A layer of nanopatterned phase separated block copolymers on an arbitrary surface comprising a first arbitrary substrate absent of chemical preparation, a layer of graphene on the first arbitrary substrate, and a layer of phase-separated block copolymers on the layer of graphene, wherein the layer of phase-separated block copolymers on the layer of graphene was formed on a second substrate and delaminated via water liftoff and wherein the nanopatterned phase separated block copolymers are utilized as a shadow mask for lithography on the first arbitrary substrate.
    Type: Grant
    Filed: December 8, 2020
    Date of Patent: October 31, 2023
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Keith E. Whitener, Woo K. Lee
  • Patent number: 11796419
    Abstract: Brillouin fiber sensors can provide distributed measurements of parameters of interest over long distances in a fiber by measuring the Brillouin frequency shift as a function of position along the fiber. The Brillouin frequency shift may be determined, to within a small fraction of the Brillouin linewidth, by establishing a series of lasing modes that experience Brillouin amplification at discrete spatial locations in a test fiber. A linewidth narrowing and high intensity associated with the lasing transition enable precise measurements of the lasing frequency associated with each of the lasing modes. The Brillouin frequency may be determined based on the lasing frequency.
    Type: Grant
    Filed: August 11, 2021
    Date of Patent: October 24, 2023
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Brandon F. Redding, Joseph B. Murray
  • Patent number: 11795483
    Abstract: A nanoplatelet serves as a substrate for immobilizing enzymes involved in consecutive reactions as a cascade. This results in a significant increase in the rate of catalysis as well as final product yield compared to non-immobilized enzymes or enzymes immobilized to quantum dots.
    Type: Grant
    Filed: June 11, 2019
    Date of Patent: October 24, 2023
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Igor L. Medintz, Joyce Breger, Scott Walper, Michael H. Stewart
  • Patent number: 11800645
    Abstract: An apparatus for interfacing with an RF/microwave subsystem is provided. The apparatus includes a printed circuit board that includes: a controller, and a connector constructed to provide control signals and power signals to a subsystem in accordance with instructions from the controller, and a mechanical interface constructed to provide a mechanical connection between the subsystem and the printed circuit board.
    Type: Grant
    Filed: August 2, 2022
    Date of Patent: October 24, 2023
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Thomas Petelik, Steven Bode, Matthew Anderson
  • Publication number: 20230332044
    Abstract: Methods of fabricating nanocrystals are disclosed. Such methods may include providing copper sulfide core nanocrystals and providing a lead precursor. Moreover, the copper sulfide core nanocrystals may be reacted with the lead precursor to generate copper doped lead sulfide nanocrystals. Related nanocrystals and optoelectronic devices are also disclosed.
    Type: Application
    Filed: May 4, 2023
    Publication date: October 19, 2023
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Patrick Y. Yee, Sarah F. Brittman, Paul D. Cunningham, Janice E. Boercker, Katherine D. Burgess, Rhonda M. Stroud, Steven C. Erwin
  • Patent number: 11791510
    Abstract: A method of cooling a battery cell includes: atomizing a cooling fluid by driving it through a micro-nozzle at a pressure sufficient to create a jet of aerosolized liquid droplets while retaining sufficient momentum in flow of the fluid to travel from the nozzle to an outer surface of the battery cell; impinging the spray of the jet of aerosolized liquid droplets on an outer surface of the battery cell; partially evaporating the liquid droplets on the outer surface to conduct heat from the outer surface; and convecting heat from the outer surface of the battery via the cooling fluid.
    Type: Grant
    Filed: April 16, 2020
    Date of Patent: October 17, 2023
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Brandon Powell, Michael R Dixon, Jr., Jesse Maxwell, Rachel Carter
  • Patent number: 11786601
    Abstract: A pegylated, circularly permuted construct of the CapD enzyme (a gamma glutamyl transferase enzyme acting as a hydrolase specific to poly-?-D-glutamic acid) is used to treat anthrax and other bacterial infections, including but not limited to infection with strains that are resistant to available antibiotics.
    Type: Grant
    Filed: January 18, 2022
    Date of Patent: October 17, 2023
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Patricia M. Legler, Arthur M. Friedlander, Jaimee R. Compton
  • Patent number: 11789004
    Abstract: A sensitive and selective, in-line method to measure and validate the sulfur content at ppb levels in both the liquid and gas phase of an analyte. The method includes patterning graphene, for example to form a mesa structure comprising horizontal or vertical lines or an array of multidentate star features; functionalizing the patterned graphene and attaching nanoparticles to the functionalized graphene to form a device; exposing the device to an analyte in the gas or liquid phase; detecting a change in electrical response when sulfur is present in the analyte; and recovering the device for future use. Also disclosed is the related sulfur detector.
    Type: Grant
    Filed: April 12, 2021
    Date of Patent: October 17, 2023
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Evgeniya H. Lock, F. Keith Perkins, Anthony K. Boyd, Rachael L. Myers-Ward, David Kurt Gaskill, Anindya Nath
  • Patent number: 11788908
    Abstract: Methods and apparatuses for quantitatively measuring strain in an optical fiber. An optical source comprising an optical beam generator and a pulse generator receives instructions from a controller and generates a pulsed optical beam in response to those instructions. The pulsed optical beam is directed into an optical fiber to generate a reflected beam from scattering centers within the optical fiber. A detector records a plurality of frames of data generated by the reflected beam, and the controller tracks an evolution of a speckle pattern carried by the reflected beam from the plurality of frames and calculates a strain induced in a section of the optical fiber from the evolution of the speckle pattern.
    Type: Grant
    Filed: September 21, 2020
    Date of Patent: October 17, 2023
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Matthew J. Murray, Brandon Redding, Allen Davis, Clay Kirkendall
  • Patent number: 11789183
    Abstract: Three or more base optical materials are selectively combined into a trans-gradient index (GRIN) optical element (e.g., a lens). A wavelength-dependent index of refraction for light propagating perpendicular to the three or more optical materials equals: a volume fraction of a first optical material multiplied by a refractive index of the first optical material, plus a volume fraction of a second optical material multiplied by a refractive index of the second optical material, plus one minus the volume fraction of the first optical material and the volume of the second optical material all multiplied by the refractive index of a third optical material. The wavelength-dependent index of refraction distribution and a refractive index dispersion through the GRIN optical element may be independently specified from one another. A local refractive index at any point in the optical element is a fixed function of a refractive index of each individual optical material.
    Type: Grant
    Filed: October 13, 2020
    Date of Patent: October 17, 2023
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Guy Beadie, Richard Flynn, James S. Shirk, Joseph Mait, Predrag Milojkovic
  • Publication number: 20230329124
    Abstract: A single layer of metamagnetic material with exchange bias comprising a single layer of FeRh, wherein the single layer of FeRh comprises ion irradiation, wherein the single layer of FeRh comprising ion irradiation is an exchange bias surface layer, and wherein the single layer of FeRh comprises an interface between a ferromagnetic (FM) region and an antiferromagnetic (AFM) region. A method to create a FM/AFM junction in a single layer of FeRh, comprising the steps of providing a layer of FeRh film, wherein the layer of FeRh film is an antiferromagnetic (AFM) film, implanting ions into the top portion of the FeRh film, creating via the step of implanting ions a ferromagnetic (FM) region in the top region, maintaining the antiferromagnetic (AFM) region of the bottom portion, and creating a FM/AFM junction in the single layer of FeRh.
    Type: Application
    Filed: April 1, 2023
    Publication date: October 12, 2023
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Cory D. Cress, Olaf M.J. van ‘t Erve, Steven P. Bennett
  • Publication number: 20230324788
    Abstract: A layer of nanopatterned phase separated block copolymers on an arbitrary surface comprising a first arbitrary substrate absent of chemical preparation, a layer of graphene on the first arbitrary substrate, and a layer of phase-separated block copolymers on the layer of graphene, wherein the layer of phase-separated block copolymers on the layer of graphene was formed on a second substrate and delaminated via water liftoff and wherein the nanopatterned phase separated block copolymers are utilized as a shadow mask for lithography on the first arbitrary substrate.
    Type: Application
    Filed: May 26, 2023
    Publication date: October 12, 2023
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Keith E. Whitener, Woo K. Lee
  • Patent number: 11779901
    Abstract: The invention relates to strong hydrogen-bond acidic sorbents. The sorbents may be provided in a form that limits or eliminates intramolecular bonding of the hydrogen-bond acidic site between neighboring sorbent molecules, for example, by providing steric groups adjacent to the hydrogen-bond acidic site. The hydrogen bond site may be a phenolic structure based on a bisphenol architecture. The sorbents of the invention may be used in methods for trapping or detecting hazardous chemicals or explosives.
    Type: Grant
    Filed: April 21, 2022
    Date of Patent: October 10, 2023
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: R. Andrew McGill, Courtney A. Roberts
  • Patent number: 11780860
    Abstract: Cyanophosphines other than P(CN)3 react with lithium dicyanamide to produce lithiated carbon phosphonitrides with mobile Li+ ions.
    Type: Grant
    Filed: November 9, 2022
    Date of Patent: October 10, 2023
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Brian L. Chaloux, Andrew P. Purdy, Albert Epshteyn