Patents Assigned to The GSI Group
  • Patent number: 7181058
    Abstract: A method and system are provided for inspecting electronic components mounted on printed circuit boards utilizing both 3-D and 2-D data associated with the components and the background on which they are mounted on the printed circuit board. Preferably, a 3-D scanner in the form of a solid state dual detector laser images the components and solder paste on the printed circuit board to obtain the 3-D and 2-D data. Then, a high speed image processor processes the 3-D data to find the locations of the leads and the solder paste. Then, the high speed image processor processes the 2-D data together with the locations of the leads and the solder paste to distinguish the leads from the solder paste. The high speed image processor may calculate centroids of feet of the leads, average height of the feet and border violation percentage of the solder paste.
    Type: Grant
    Filed: December 11, 2000
    Date of Patent: February 20, 2007
    Assignee: GSI Group, Inc.
    Inventors: John J. Weisgerber, Donald J. Svetkoff, Donald K. Rohrer
  • Patent number: 7176407
    Abstract: A high-speed method and system for precisely positioning a waist of a material-processing laser beam to dynamically compensate for local variations in height of microstructures located on a plurality of objects spaced apart within a laser-processing site are provided. In the preferred embodiment, the microstructures are a plurality of conductive lines formed on a plurality of memory dice of a semiconductor wafer. The system includes a focusing lens subsystem for focusing a laser beam along an optical axis substantially orthogonal to a plane, an x-y stage for moving the wafer in the plane, and a first air bearing sled for moving the focusing lens subsystem along the optical axis.
    Type: Grant
    Filed: April 26, 2005
    Date of Patent: February 13, 2007
    Assignee: GSI Group Corporation
    Inventors: Bradley L. Hunter, Steven P. Cahill, Jonathan S. Ehrmann, Michael Plotkin
  • Patent number: 7170251
    Abstract: A diagnostic system is disclosed for analyzing a limited rotation motor system. The diagnostic system includes a first transform unit, a second transform unit, a closed loop frequency response unit, and a diagnostic system. The first transform unit is for receiving a first digital signal that is representative of a motor control signal, and is for providing a motor control frequency domain signal that is representative of a frequency domain representation of the motor control signal. The second transform unit is for receiving a second digital signal that is representative of a position detection signal, and is for providing a position detection frequency domain signal that is representative of a frequency domain representation of the position detection signal. The closed loop frequency response unit is for identifying a representation of the frequency response of the limited rotation motor responsive to the position detection frequency domain signal and the motor control frequency domain signals.
    Type: Grant
    Filed: January 21, 2005
    Date of Patent: January 30, 2007
    Assignee: GSI Group Corporation
    Inventor: Yuhong Huang
  • Publication number: 20070019903
    Abstract: A method of fabricating a plurality of composite optical assemblies is disclosed. Each optical assembly includes a first optical element and a second optical element. The method includes the steps of providing a first composite substrate that may be divided into a plurality of first optical elements and forming on an exposed surface of the first composite substrate a second composite substrate that may be divided into a plurality of second optical elements, the first and second composite substrates providing a composite structure.
    Type: Application
    Filed: September 26, 2006
    Publication date: January 25, 2007
    Applicant: GSI GROUP CORPORATION
    Inventors: Christopher Wimperis, William McCreath, William Eccleshall, Mandeep Singh, Christopher Becker, Richard Neily, Kurt Pelsue
  • Patent number: 7148447
    Abstract: A precision, laser-based method and system for high-speed, sequential processing of material of targets within a field are disclosed that control the irradiation distribution pattern of imaged spots. For each spot, a laser beam is incident on a first anamorphic optical device and a second anamorphic optical device so that the beam is controllably modified into an elliptical irradiance pattern. The modified beam is propagated through a scanning optical system with an objective lens to image a controlled elliptical spot on the target. In one embodiment, the relative orientations of the devices along an optical axis are controlled to modify the beam irradiance pattern to obtain an elliptical shape while the absolute orientation of the devices controls the orientation of the elliptical spot.
    Type: Grant
    Filed: January 16, 2006
    Date of Patent: December 12, 2006
    Assignee: GSI Group Corporation
    Inventors: Jonathan S. Ehrmann, James J. Cordingley, Donald V. Smart, Donald J. Svetkoff
  • Patent number: 7146064
    Abstract: A method of fabricating a plurality of composite optical assemblies is disclosed. Each optical assembly includes a first optical element and a second optical element. The method includes the steps of providing a first composite substrate that may be divided into a plurality of first optical elements and forming on an exposed surface of the first composite substrate a second composite substrate that may be divided into a plurality of second optical elements, the first and second composite substrates providing a composite structure.
    Type: Grant
    Filed: April 2, 2002
    Date of Patent: December 5, 2006
    Assignee: GSI Group Corporation
    Inventors: Christopher Wimperis, William McCreath, William Eccleshall, Mandeep Singh, Christopher D. Becker, Richard A. Neily, Kurt Pelsue
  • Patent number: 7135987
    Abstract: A system is disclosed for recording continuous streaming data. The system includes a data collection unit, a wireless data transmission unit, a wireless data reception unit and a recorder unit. The data collection unit is for continuously collecting data at a data collection frequency, ƒC and providing collected data. The wireless data transmission unit is for continuously transmitting the collected data at a data transmission frequency, ƒT where ƒC is greater than ƒT. The wireless data reception unit is for continuously receiving collected data at a data reception frequency, ƒR where ƒR is equal to ƒT. The recorder unit is for providing a recorder output of the collected data at a frequency of ƒO where ƒO is equal to ƒT.
    Type: Grant
    Filed: May 30, 2003
    Date of Patent: November 14, 2006
    Assignee: GSI Group Corporation
    Inventors: Robert LaMotte, William Perry, William Saltzstein
  • Patent number: 7136547
    Abstract: The invention provides a method and apparatus for directing a radiation beam (504, 606) in a desired direction. There is provided a movable member (10) supported for movement by a fixed member (40) and the movable member has an optical element, e.g a flat mirror (30) fixedly attached thereto. In one embodiment the mirror scans a radiation beam incident thereon in one plane. In a second embodiment, the radiation beam is scanned in two mutually perpendicular planes. A magnetic element (50) having a north and a south magnetic pole is fixedly attached to the movable member (10). A magnetically permeable stator element (70) that is stationary with respect to the movable member (10) and the magnetic element (50) is placed in the field of the magnetic element such that the stator element and said magnetic element mutually generate a magnetic traction force between them.
    Type: Grant
    Filed: February 13, 2002
    Date of Patent: November 14, 2006
    Assignee: GSI Group Corporation
    Inventors: David C. Brown, Felix Stukalin, Michael B. Nussbaum, Evghenii Onoicenco, Edward L. Kelley
  • Patent number: 7129601
    Abstract: A method and apparatus for supporting a movable member (10) with respect to a fixed member (40) is provided. The movable member (10) includes a magnetically permeable portion (81) contained therein and magnetic element (50) fixedly attached thereto and movable therewith. The movable member (10) is supported for rotation with respect to the fixed member (40) by an outer bearing surface (11) of the movable member and an inner bearing surface (20) of the fixed member (40). The fixed member (40) provides access to the movable member (10) from two sides thereof. A magnetically permeable stator element (70) is fixedly attached to the fixed member (40) and positioned within a magnetic flux field of the magnetic element (50) such that an air gap (73) is formed between the magnetic element (50) and the stator element (70).
    Type: Grant
    Filed: February 13, 2002
    Date of Patent: October 31, 2006
    Assignee: GSI Group Corporation
    Inventors: David C. Brown, Felix Stukalin, Michael B. Nussbaum, Kurt Pelsue
  • Patent number: 7126109
    Abstract: An encoder calculates position error values and applies compensation values to encoder position measurements in-situ. The encoder includes a scale and a multi-section detector for detecting a spatially periodic pattern, such as an optical interference pattern, produced by the scale. The detector includes spatially separated first and second sections. A signal processor estimates respective phase values from detector sections and calculates a phase difference reflecting a spatial position error in the scale. A compensation value is calculated from the phase difference and included in the estimate of the scale position to compensate for this spatial position error. The compensation values may be calculated and used on the fly, or calculated and saved during an in-situ calibration operation and then utilized during normal operation to compensate uncorrected measurements.
    Type: Grant
    Filed: June 14, 2004
    Date of Patent: October 24, 2006
    Assignee: GSI Group Corporation
    Inventors: Andrew Goldman, William G. Thorburn
  • Patent number: 7119351
    Abstract: A system and method for inspecting machine readable marks on one side of a wafer without requiring transmission of radiant energy from another side of the wafer and through the wafer. The wafer has articles which may include die, chip scale packages, circuit patterns and the like. The marking occurs in a wafer marking system and within a designated region relative to an article position. The articles have a pattern on a first side. The method includes the steps of imaging a first side of the wafer, imaging a second side of the wafer, establishing correspondence between a portion of first side image and a portion of a second side image, and superimposing image data from the first and second sides to determine at least the position of a mark relative to an article.
    Type: Grant
    Filed: May 15, 2003
    Date of Patent: October 10, 2006
    Assignee: GSI Group Corporation
    Inventor: Michael Woelki
  • Publication number: 20060186360
    Abstract: A processing apparatus calculates and applies calibrations to sensors that produce quasi-sinusoidal, quadrature signals, using fixed or programmable electronic circuits, a circuit to calculate the phase and magnitude corresponding to the two input (quadrature) signals, and a circuit for accumulating the number of cycles of the input signals. The apparatus also includes a circuit to generate Gain, Offset, and Phase calibration coefficients by comparing a phase space position of a measured phasor with the position of an idealized phasor whose locus in phase space is a circle of predetermined radius with no offset. The calculation of the coefficients occurs without user intervention, according to a pre-programmed rule or rules.
    Type: Application
    Filed: April 23, 2006
    Publication date: August 24, 2006
    Applicant: GSI Group Corporation
    Inventors: Paul Remillard, Stuart Schechter, Douglas Klingbeil
  • Patent number: 7090261
    Abstract: A watering system for a poultry house comprises a watering line which is suspended from a stabilizing bar by means of a clip. The watering line is comprised of a plurality of pipe segments connected together by a coupling mechanism. The coupling mechanism includes a keying element or portion which is formed in the pipe segment at a predetermined location relative to the drinker opening in the pipe segment. The coupling mechanism thus rotationally fixes adjacent pipe segments relative to each other such that the drinker openings of the pipes segments in the watering line are rotationally aligned and fixed relative to each other. The clip includes a boot which engages a projection on the pipe segment (preferably the drinker saddle) to key the pipe segments relative to the stabilizing bar.
    Type: Grant
    Filed: January 26, 2004
    Date of Patent: August 15, 2006
    Assignee: The GSI Group, Inc.
    Inventors: Eugene B. Pollock, James M. Adermann
  • Patent number: 7075057
    Abstract: A processing apparatus calculates and applies calibrations to sensors that produce quasi-sinusoidal, quadrature signals, using fixed or programmable electronic circuits, a circuit to calculate the phase and magnitude corresponding to the two input (quadrature) signals, and a circuit for accumulating the number of cycles of the input signals. The apparatus also includes a circuit to generate Gain, Offset, and Phase calibration coefficients by comparing a phase space position of a measured phasor with the position of an idealized phasor whose locus in phase space is a circle of predetermined radius with no offset. The calculation of the coefficients occurs without user intervention, according to a pre-programmed rule or rules. The apparatus also includes a circuit to apply the Gain, Offset, and Phase calibration coefficients to the measured quadrature signals xi and yi according to predetermined formulae using scaling coefficients, offset coefficients and a phase coefficient.
    Type: Grant
    Filed: April 26, 2005
    Date of Patent: July 11, 2006
    Assignee: GSI Group Corporation
    Inventors: Paul Remillard, Stuart Schechter, Douglas A. Klingbeil
  • Patent number: 7067763
    Abstract: An improved method of laser marking semiconductor wafers is provided wherein undesirable subsurface damage to a silicon semiconductor wafer is avoided while providing a relative improvement in marking speed for a predetermined spot diameter. A laser pulse of a laser beam has a predetermined wavelength, pulse width, repetition rate, and energy. The method further includes irradiating a semiconductor wafer with the pulsed laser beam over a spot diameter to produce a machine readable mark on the semiconductor wafer. The mark has a mark depth. The pulse width is less than about 50 ns, and the step of irradiating irradiates over the spot diameter to produce a mark having a mark depth substantially less than about 10 microns.
    Type: Grant
    Filed: May 15, 2003
    Date of Patent: June 27, 2006
    Assignee: GSI Group Corporation
    Inventor: Rainer Schramm
  • Patent number: 7067797
    Abstract: An optical encoder includes an optical source, a scale, an optical detector and signal processing circuitry. The scale is operative with a light beam from the source to generate an optical pattern such as a line pattern extending in an X direction of relative movement between the scale and the source. The detector generates analog detector output signals indicative of the location of the optical pattern on the detector in an alignment direction orthogonal to the X direction. The detector may include two bi-cell elements spaced apart in the X direction, each element including two cells of complementary shape, such as a sharks-tooth. The signal processing circuitry operates in response to the detector output signals to generate an alignment value indicating a polarity and a magnitude of misalignment between the detector and the scale in the alignment direction.
    Type: Grant
    Filed: September 15, 2004
    Date of Patent: June 27, 2006
    Assignee: GSI Group Corporation
    Inventors: Donald K. Mitchell, William G. Thorburn, Andrew Goldman, Keith M. Hinrichs
  • Patent number: 7065121
    Abstract: Methods and systems for laser-based processing of materials are disclosed wherein a scalable laser architecture, based on planar waveguide technology, provides for pulsed laser micromachining applications while supporting higher average power applications like laser welding and cutting. Various embodiments relate to improvements in planar waveguide technology which provide for stable operation at high powers with a reduction in spurious outputs and thermal effects. At least one embodiment provides for micromachining with pulsewidths in the range of femtoseconds to nanoseconds. In another embodiment, 100 W or greater average output power operation is provided for with a diode-pumped, planar waveguide architecture.
    Type: Grant
    Filed: November 13, 2002
    Date of Patent: June 20, 2006
    Assignee: GSI Group Ltd.
    Inventors: David M. Filgas, Frank Haran, Andreas Mank, John Robertson
  • Patent number: 7054341
    Abstract: Laser processing methods, systems and apparatus having a super-modulating power supply (6) or pumping subsystem (5) and high beam quality (i.e., brightness) are disclosed. The methods, systems and apparatus have significant benefits, improved operation characteristics and material processing capability over currently available methods, systems and apparatus. In at least one embodiment, the beam quality of a high power solid state laser (2) is improved in the presence of thermal lensing. High power laser cutting, scribing, and welding results are improved with a combination of modulation and high beam quality while providing for improved processing speeds.
    Type: Grant
    Filed: February 19, 2003
    Date of Patent: May 30, 2006
    Assignee: GSI Group Ltd.
    Inventors: Gerald Francis Hermann, Thomas Robert Kugler, Mohammed Naeem, Keith Withnall, Walther Goethals, David M. Filgas
  • Publication number: 20060086702
    Abstract: An energy-efficient method and system for processing target material such as microstructures in a microscopic region without causing undesirable changes in electrical and/or physical characteristics of material surrounding the target material is provided. The system includes a controller for generating a processing control signal and a signal generator for generating a modulated drive waveform based on the processing control signal. The waveform has a sub-nanosecond rise time. The system also includes a gain-switched, pulsed semiconductor seed laser for generating a laser pulse train at a repetition rate. The drive waveform pumps the laser so that each pulse of the pulse train has a predetermined shape. Further, the system includes a laser amplifier for optically amplifying the pulse train to obtain an amplified pulse train without significantly changing the predetermined shape of the pulses.
    Type: Application
    Filed: December 19, 2005
    Publication date: April 27, 2006
    Applicant: GSI GROUP CORP
    Inventor: Donald Smart
  • Patent number: 7015418
    Abstract: A method of calibrating a laser marking system includes calibrating a laser marking system in three dimensions. The step of calibrating includes storing data corresponding to a plurality of heights. A position measurement of a workpiece is obtained to be marked. Stored calibration data is associated with the position measurement. A method and system for calibrating a laser processing or marking system is provided. The method includes: calibrating a laser marker over a marking field; obtaining a position measurement of a workpiece to be marked; associating stored calibration data with the position measurement; relatively positioning a marking beam and the workpiece based on at least the associated calibration data; and calibrating a laser marking system in at least three degrees of freedom. The step of calibrating includes storing data corresponding to a plurality of positions and controllably and relatively positioning a marking beam based on the stored data corresponding to the plurality of positions.
    Type: Grant
    Filed: May 15, 2003
    Date of Patent: March 21, 2006
    Assignee: GSI Group Corporation
    Inventors: Steven P. Cahill, Jonathan S. Ehrmann, You C. Li, Rainer Schramm, Kurt Pelsue