Patents Assigned to The Institute of Microelectronics Chinese Academy of Science
-
Patent number: 9312187Abstract: The present invention discloses a semiconductor device, comprising a first MOSFET; a second MOSFET; a first stress liner covering the first MOSFET and having a first stress; a second stress liner covering the second MOSFET and having a second stress; wherein the second stress liner and/or the first stress liner comprise(s) a metal oxide. In accordance with the high-stress CMOS and method of manufacturing the same of the present invention, a stress layer comprising a metal oxide is formed selectively on PMOS and NMOS respectively by using a CMOS compatible process, whereby carrier mobility of the channel region is effectively enhanced and the performance of the device is improved.Type: GrantFiled: April 11, 2012Date of Patent: April 12, 2016Assignee: The Institute of Microelectronics, Chinese Academy of ScienceInventors: Huaxiang Yin, Xiaolong Ma, Qiuxia Xu, Dapeng Chen
-
Patent number: 9281398Abstract: The present invention discloses a semiconductor device, which comprises a substrate, a gate stack structure on the substrate, a channel region in the substrate under the gate stack structure, and source and drain regions at both sides of the channel region, wherein there is a stressed layer under and at both sides of the channel region, in which the source and drain regions are formed. According to the semiconductor device and the method for manufacturing the same of the present invention, a stressed layer is formed at both sides of and under the channel region made of a silicon-based material so as to act on the channel region, thereby effectively increasing the carrier mobility of the channel region and improving the device performance.Type: GrantFiled: July 3, 2012Date of Patent: March 8, 2016Assignee: The Institute of Microelectronics, Chinese Academy of ScienceInventors: Huaxiang Yin, Changliang Qin, Xiaolong Ma, Qiuxia Xu, Dapeng Chen
-
Patent number: 9224589Abstract: A method for eliminating contact bridge in a contact hole process is disclosed, wherein a cleaning menu comprising a multi-step adaptive protective thin film deposition process is provided, so that a stack adaptive protective thin film is formed on the sidewall of the chamber of the HDP CVD equipment. The stack adaptive protective thin film has good adhesivity, compactness and uniformity to protect the sidewall of the chamber of the HDP CVD equipment from being damaged by the plasma, and avoid the generation of defect particles, thereby improving the HDP CVD technical yield and eliminating the contact bridge phenomenon in the contact hole process.Type: GrantFiled: November 28, 2011Date of Patent: December 29, 2015Assignee: The Institute of Microelectronics Chinese Academy of ScienceInventors: Guilei Wang, Junfeng Li, Chao Zhao
-
Patent number: 9082849Abstract: The present invention provides a method for manufacturing a semiconductor structure, comprising the steps of: providing a semiconductor substrate, forming an insulating layer on the semiconductor substrate, and forming a semiconductor base layer on the insulating layer; forming a sacrificial layer and a spacer surrounding the sacrificial layer on the semiconductor base layer, and etching the semiconductor base layer by taking the spacer as a mask to form a semiconductor body; forming a dielectric film on sidewalls of the semiconductor body; removing the sacrificial layer and the semiconductor body located under the sacrificial layer to form a first semiconductor fin and a second semiconductor fin; and forming a retrograde doped well structure on the inner walls of the first semiconductor fin and the second semiconductor fin, wherein the inner walls thereof are opposite to each other. Correspondingly, the present invention further provides a semiconductor structure.Type: GrantFiled: May 14, 2012Date of Patent: July 14, 2015Assignee: The Institute of Microelectronics Chinese Academy of ScienceInventors: Haizhou Yin, Huilong Zhu, Zhijiong Luo
-
Patent number: 9054018Abstract: The present invention discloses a method for manufacturing a semiconductor device, which comprises: forming a plurality of fins on a substrate, which extend along a first direction and have rhombus-like cross-sections; forming a gate stack structure on each fin, which traverses the plurality of fins and extends along a second direction; wherein a portion in each fin that is under the gate stack structure forms a channel region of the device, and portions in each fin that are at both sides of the gate stack structure along the first direction form source and drain regions. The semiconductor device and its manufacturing method according to the present invention use rhombus-like fins to improve the gate control capability to effectively suppress the short channel effect, moreover, an epitaxial quantum well is used therein to better limit the carriers, thus improving the device drive capability.Type: GrantFiled: October 12, 2012Date of Patent: June 9, 2015Assignee: The Institute of Microelectronics, Chinese Academy of SciencesInventors: Xiaolong Ma, Huaxiang Yin, Sen Xu, Huilong Zhu
-
Patent number: 9049061Abstract: This invention discloses a CMOS device, which includes: a first MOSFET; a second MOSFET different from the type of the first MOSFET; a first stressed layer covering the first MOSFET and having a first stress; and a second stressed layer covering the second MOSFET, wherein the second stressed layer is doped with ions, and thus has a second stress different from the first stress. This invention's CMOS device and method for manufacturing the same make use of a partitioned ion implantation method to realize a dual stress liner, without the need of removing the tensile stressed layer on the PMOS region or the compressive stressed layer on the NMOS region by photolithography/etching, thus simplifying the process and reducing the cost, and at the same time, preventing the stress in the liner on the NMOS region or PMOS region from the damage that might be caused by the thermal process of the deposition process.Type: GrantFiled: April 11, 2012Date of Patent: June 2, 2015Assignee: The Institute of Microelectronics Chinese Academy of ScienceInventors: Qiuxia Xu, Chao Zhao, Gaobo Xu
-
Patent number: 8994119Abstract: The present invention discloses a semiconductor device, comprising substrates, a plurality of gate stack structures on the substrate, a plurality of gate spacer structures on both sides of each gate stack structure, a plurality of source and drain regions in the substrate on both sides of each gate spacer structure, the plurality of gate spacer structures comprising a plurality of first gate stack structures and a plurality of second gate stack structures, wherein each of the first gate stack structures comprises a first gate insulating layer, a first work function metal layer, a second work function metal diffusion blocking layer, and a gate filling layer; Each of the second gate stack structures comprises a second gate insulating layer, a first work function metal layer, a second work function metal layer, and a gate filling layer, characterized in that the first work function metal layer has a first stress, and the gate filling layer has a second stress.Type: GrantFiled: April 11, 2012Date of Patent: March 31, 2015Assignee: The Institute of Microelectronics Chinese Academy of SciencesInventors: Huaxiang Yin, Zuozhen Fu, Qiuxia Xu, Chao Zhao, Dapeng Chen
-
Patent number: 8912070Abstract: The present invention discloses a method for manufacturing a semiconductor device, comprising: forming a gate stack structure on a substrate; forming a drain region in the substrate on one side of the gate stack structure; and forming a source region made of GeSn in the substrate on the other side of the gate stack structure; wherein the forming the source region made of GeSn comprises: implanting precursors in the substrate on the other side of the gate stack structure; and performing a laser rapid annealing such that the precursors react to produce GeSn alloy, thereby to constitute a source region; and wherein the step of implanting precursors further comprises: performing a pre-amorphization ion implantation, so as to form an amorphized region in the substrate; and implanting Sn in the amorphized region.Type: GrantFiled: October 12, 2012Date of Patent: December 16, 2014Assignee: The Institute of Microelectronics Chinese Academy of ScienceInventors: Xiaolong Ma, Huaxiang Yin, Zuozhen Fu
-
Patent number: 8906753Abstract: The present invention provides a method for manufacturing a semiconductor structure, which comprises: providing an SOI substrate, forming a gate structure on the SOI substrate; etching an SOI layer of the SOI substrate and a BOX layer of the SOI substrate on both sides of the gate structure to form trenches, the trenches exposing the BOX layer and extending partly into the BOX layer; forming sidewall spacers on sidewalls of the trenches; forming inside the trenches a metal layer covering the sidewall spacers, wherein the metal layer is in contact with the SOI layer which is under the gate structure. Accordingly, the present invention further provides a semiconductor structure formed according to aforesaid method.Type: GrantFiled: August 25, 2011Date of Patent: December 9, 2014Assignee: The Institute of Microelectronics Chinese Academy of ScienceInventors: Haizhou Yin, Huilong Zhu, Zhijiong Luo
-
Patent number: 8889519Abstract: The present invention discloses a semiconductor device, comprising: a substrate, a gate stack structure on the substrate, source and drain regions in the substrate on both sides of the gate stack structure, and a channel region between the source and drain regions in the substrate, characterized in that at least one of the source and drain regions comprises a GeSn alloy. In accordance with the semiconductor device and method for manufacturing the same of the present invention, GeSn stressed source and drain regions with high concentration of Sn is formed by implanting precursors and performing a laser rapid annealing, thus the device carrier mobility of the channel region is effectively enhanced and the device drive capability is further improved.Type: GrantFiled: October 12, 2012Date of Patent: November 18, 2014Assignee: The institute of Microelectronics Chinese Academy of ScienceInventors: Xiaolong Ma, Huaxiang Yin, Zuozhen Fu
-
Patent number: 8853024Abstract: The present invention discloses a method for manufacturing a semiconductor device comprising the steps of: forming a plurality of source and drain regions in a substrate; forming a plurality of gate spacer structures and an interlayer dielectric layer around the gate spacer structures on the substrate, wherein the gate spacer structures enclose a plurality of first gate trenches and a plurality of second gate trenches; sequentially depositing a first gate insulating layer and a second gate insulating layer, a first blocking layer and a second work function regulating layer in the first and second gate trenches; performing selective etching to remove the second work function regulating layer from the first gate trenches to expose the first blocking layer; depositing a first work function regulating layer on the first blocking layer in the first gate trenches and on the second work function regulating layer in the second gate trenches; and depositing a resistance regulating layer on the first work function reguType: GrantFiled: August 27, 2012Date of Patent: October 7, 2014Assignee: The Institute of Microelectronics, Chinese Academy of ScienceInventors: Huaxiang Yin, Jiang Yan, Dapeng Chen
-
Patent number: 8841190Abstract: This invention relates to a MOS device for making the source/drain region closer to the channel region and a method of manufacturing the same, comprising: providing an initial structure, which includes a substrate, an active region, and a gate stack; performing ion implantation in the active region on both sides of the gate stack, such that part of the substrate material undergoes pre-amorphization to form an amorphous material layer; forming a first spacer; with the first spacer as a mask, performing dry etching, thereby forming a recess, with the amorphous material layer below the first spacer kept; performing wet etching using an etchant solution that is isotropic to the amorphous material layer and whose etch rate to the amorphous material layer is greater than or substantially equal to the etch rate to the {100} and {110} surfaces of the substrate material but is far greater than the etch rate to the {111} surface of the substrate material, thus removing the amorphous material layer below the first spaceType: GrantFiled: April 10, 2012Date of Patent: September 23, 2014Assignee: The Institute of Microelectronics Chinese Academy of ScienceInventors: Changliang Qin, Huaxiang Yin
-
Patent number: 8829642Abstract: The present invention discloses a semiconductor device, which comprises: a substrate, and a shallow trench isolation in the substrate, characterized in that, the semiconductor device further comprises a stress release layer between the substrate and the shallow trench isolation. In the semiconductor device and the method for manufacturing the same according to the present invention, the stresses accumulated during the formation of the STI can be released by interposing the stress release layer made of a softer material between the substrate and the STI, thereby reducing the leakage current of the substrate of the device and improving the device reliability.Type: GrantFiled: April 9, 2012Date of Patent: September 9, 2014Assignee: The Institute of Microelectronics, Chinese Academy of ScienceInventors: Haizhou Yin, Wei Jiang
-
Patent number: 8822334Abstract: A method for manufacturing a semiconductor structure comprises: providing a substrate (100) on which a dummy gate stack is formed, forming a spacer (240) at sidewalls of the dummy gate stack, and forming a source/drain region (110) and a source/drain extension region (111) at both sides of the dummy gate stack; removing at least part of the spacer (240), to expose at least part of the source/drain extension region (111); forming a contact layer (112) on the source/drain region (110) and the exposed source/drain extension region (111), the contact layer (112) being [made of] one of CoSi2, NiSi and Ni(Pt)Si2-y or combinations thereof, and a thickness of the contact layer (112) being less than 10 nm. Correspondingly, the present invention further provides a semiconductor structure which is beneficial to reducing contact resistance and can maintain excellent performance in a subsequent high temperature process.Type: GrantFiled: April 18, 2011Date of Patent: September 2, 2014Assignee: The Institute of Microelectronics, Chinese Academy of ScienceInventors: Haizhou Yin, Jun Luo, Zhijiong Luo, Huilong Zhu
-
Patent number: 8809134Abstract: A method of manufacturing a semiconductor structure, which comprises the steps of: providing a substrate, forming a fin on the substrate, which comprises a central portion for forming a channel and an end portion for forming a source/drain region and a source/drain extension region; forming a gate stack to cover the central portion of the fin; performing light doping to form a source/drain extension region in the end portion of the fin; forming a spacer on sidewalls of the gate stack; performing heavy doping to form a source/drain region in the end portion of the fin; removing at least a part of the spacer to expose at least a part of the source/drain extension region; forming a contact layer on an upper surface of the source/drain region and an exposed area of the source/drain extension region. Correspondingly, the present invention also provides a semiconductor structure.Type: GrantFiled: May 17, 2012Date of Patent: August 19, 2014Assignee: The Institute of Microelectronics Chinese Academy of ScienceInventors: Haizhou Yin, Wei Jiang
-
Patent number: 8796744Abstract: The present invention discloses a semiconductor device, which comprises a substrate, a buffer layer on the substrate, an inversely doped isolation layer on the buffer layer, a barrier layer on the inversely doped isolation layer, a channel layer on the barrier layer, a gate stack structure on the channel layer, and source and drain regions at both sides of the gate stack structure, characterized in that the buffer layer and/or the barrier layer and/or the inversely doped isolation layer are formed of SiGe alloys or SiGeSn alloys, and the channel layer is formed of a GeSn alloy. The semiconductor device according to the present invention uses a quantum well structure of SiGe/GeSn/SiGe to restrict transportation of carriers, and it introduces a stress through lattice mis-match to greatly increase the carrier mobility, thus improving the device driving capability so as to be adapted to high-speed and high-frequency application.Type: GrantFiled: October 12, 2012Date of Patent: August 5, 2014Assignee: The Institute of Microelectronics Chinese Academy of ScienceInventors: Xiaolong Ma, Huaxiang Yin, Sen Xu, Huilong Zhu
-
Patent number: 8791502Abstract: The present invention discloses a semiconductor device, comprising: a substrate, a channel layer epitaxially grown in the substrate, a gate stack structure on the channel layer, gate spacers on both sides of the gate stack structure, and source/drain areas on both sides of the channel layer in the substrate, characterized in that the carrier mobility of the channel layer is higher than that of the substrate. In accordance with the semiconductor device and the method of manufacturing the same in the present invention, forming the device channel region by filling the trench with epitaxial high-mobility materials in a gate last process can enhance the carrier mobility in the channel region, thereby the device response speed is substantially improved and the device performance is greatly enhanced.Type: GrantFiled: November 30, 2011Date of Patent: July 29, 2014Assignee: The institute of microelectronics Chinese Academy of ScienceInventor: Guilei Wang
-
Patent number: 8765540Abstract: The present invention provides a semiconductor structure, which comprises: a substrate, a semiconductor base, a semiconductor auxiliary base layer, a cavity, a gate stack, a sidewall spacer, and a source/drain region, wherein the gate stack is located on the semiconductor base; the sidewall spacer is located on the sidewalls of the gate stack; the source/drain region is embedded in the semiconductor base and is located on both sides of the gate stack; the cavity is embedded in the substrate; the semiconductor base is suspended above the cavity, the thickness of the middle portion of the semiconductor base is greater than the thickness of the two end portions of the semiconductor base in the direction of the length of the gate, and the two end portions of the semiconductor base are connected to the substrate in the direction of the width of the gate; and the semiconductor auxiliary base layer is located on the sidewall of the semiconductor base and has an opposite doping type to that of the source/drain regionType: GrantFiled: May 16, 2012Date of Patent: July 1, 2014Assignee: The Institute of Microelectronics Chinese Academy of ScienceInventors: Haizhou Yin, Huilong Zhu, Zhijiong Luo
-
Patent number: 8716090Abstract: The present invention provides a manufacturing method for a semiconductor device having epitaxial source/drain regions, in which a diffusion barrier layer of the source/drain regions made of epitaxial silicon-carbon or germanium silicon-carbon are added on the basis of epitaxially growing germanium-silicon of the source/drain regions in the prior art process, and the introduction of the diffusion barrier layer of the source/drain regions prevents diffusion of the dopant in the source/drain regions, thus mitigating the SCE and DIBL effect.Type: GrantFiled: June 12, 2012Date of Patent: May 6, 2014Assignee: The Institute of Microelectronics Chinese Academy of ScienceInventors: Changliang Qin, Huaxiang Yin
-
Patent number: 8703567Abstract: The present invention discloses a method for manufacturing a semiconductor device, comprising: forming an insulating isolation layer on a substrate; forming an insulating isolation layer trench in the insulating isolation layer; forming an active region layer in the insulating isolation layer trench; forming a semiconductor device structure in and above the active region layer; characterized in that the carrier mobility of the active region layer is higher than that of the substrate. Said active region is formed of a material different from that of the substrate, the carrier mobility in the channel region is enhanced, thereby the device response speed is improved and the device performance is enhanced. Unlike the existing STI manufacturing process, for the present invention, an STI is formed first, and then filling is performed to form an active region, thus avoiding the problem of generation of holes in STI, and improving the device reliability.Type: GrantFiled: November 29, 2011Date of Patent: April 22, 2014Assignee: The Institute of Microelectronics Chinese Academy of ScienceInventors: Guilei Wang, Chunlong Li, Chao Zhao